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a b s t r a c t

Robust optimization deals with considering different types of uncertainties during the
optimization process in order to obtain reliable solutions, a critical issue when solving real
problems. Multiple objectives are another vital aspect of real problems that should be
considered during optimization. In order to benchmark the performance of different
meta-heuristics, test problems are essential, as the literature shows. Despite the significant
number of studies in developing multi-objective test problems, there is currently neither
study on the suitability of the current robust multi-objective benchmark problems, nor
standard frameworks to create them. This motivates our attempts to investigate the fea-
tures of the current robust test problems and propose three novel frameworks to generate
various robust multi-objective test problems with alterable parameters. As case studies,
Robust Multi-Objective Particle Swarm Optimization (RMOPSO), Robust Non-dominated
Sorting Genetic Algorithm (RNSGA-II), Robust Multiobjective Evolutionary Algorithm
Based on Decomposition (RMOEA/D), Robust Two Local Best Multi-objective Particle
Swarm Optimization (R2LB-MOPSO), and Robust Decomposition-Based Multi-objective
Evolutionary Algorithm with an Ensemble of Neighborhood Sizes (RENS-MOEA/D) are
benchmarked on the proposed test problems. The results show that the proposed frame-
works are able to generate robust multi-objective test problems with different adjustable
characteristics and levels of difficulty. In addition, the results show that the test problems
generated by the proposed frameworks can provide very challenging test beds for effec-
tively benchmarking the performance of robust meta-heuristics.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

One of the key concepts in the optimization of real problems is robustness. Robust optimization refers to the process of
finding optimal solutions for a particular problem that have least variability to probable uncertainties. Uncertainties are
unavoidable in the real world and occur in different components of a system: operating/environmental conditions, param-
eters, outputs, and constraints. Such uncertainties do not usually occur in laboratories when trying to design systems.

Generally speaking, robust optimization refers to the process of considering any types of uncertainties during optimiza-
tion. In the literature, this term has mostly referred to handling uncertainties in the parameters of a problem. In this work,
however, we use the term ‘‘robust optimization’’ for considering any type of uncertainties. There are different classifications
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in the literature for categorizing uncertainties [4,35]. We utilize the classification provided by Beyer and Sendhoff [4], in
which the uncertainties are categorized based on their sources, as follows:

� Type A: this uncertainty occurs in environmental and operating conditions. Perturbations in speed, temperature, moisture,
angle of attack in airfoil design, or speed of the vehicle in propeller design are some examples of this type of uncertainty.
� Type B: in this case the parameters may vary after determining the optimal solution(s). One of the major sources of this

kind of uncertainty is manufacturing tolerances.
� Type C: in this case the system itself produces noisy outputs. It might be due to sensory measurement errors or random-

ised simulations. Simulators that approximate outputs of systems generate this type of uncertainty. This also may happen
when the evaluation of a fitness function is expensive or an analytical fitness function is not available; e.g. in Computa-
tional Fluid Dynamics (CFD) problems. The main difference between this type of uncertainty and type A is that the error is
deterministic. Time-varying (dynamic) systems also fall under type C uncertainty.
� Type D: in this type of uncertainty, the constraints are perturbed (feasibility uncertainties). These uncertainties are differ-

ent from the three above-mentioned uncertainties in that they affect the boundaries of the search space.

Another issue when solving real problems is that of multiple objectives. Multi-objective optimization refers to the process
of considering more than one objective simultaneously when solving a problem [14]. In contrast to single-objective optimi-
zation, the ultimate goal of a multiple objective optimizer is to find a set of solutions called Pareto optimal solutions that
represent the best trade-offs between the objectives. Maintaining multi-objective formulation of problems allows a designer
to optimize problems with different conflicting/non-conflicting objectives across a wide range of design parameters [7].
There are many publications in this field [50–52]. In contrast to multi-objective optimization, unfortunately, robust optimi-
zation has not gained similar attention. Therefore, robust optimization (particularly for multi-objective problems) lags far
behind other concepts of optimization.

Regardless of the significantly different popularity of both fields, the common tools when developing or proposing new
optimization techniques are benchmark problems. Generally speaking, test problems are essential for benchmarking meta-
heuristics in terms of different capabilities. In the field of multi-objective optimization, there are many studies considering
benchmark problems. Various test functions have been proposed and there are sets of standard test functions. In the field of
robust multi-objective optimization, however, there has been neither study of the suitability of the current test function, nor
is there a set of standard test functions. This motivates our attempts to investigate the effectiveness of current robust multi-
objective test problems and propose a set of new standard test functions using three novel frameworks, which provide the
most challenging test beds in the literature and are able to benchmark robust multi-objective meta-heuristics from different
perspectives. The rest of the paper is organized as follows.

Section 2 provides the preliminaries and essential concepts of robust optimization in both single and multi-objective
search spaces. A literature review of the current robust multi-objective test problems is discussed in Section 3. Section 4 pro-
poses three frameworks to create a standard set of robust multi-objective test functions. The experimental results of several
multi-objective optimization algorithms are demonstrated in Section 5. Section 6 concludes the work and suggests some
guidelines for future studies.

2. Robust optimization

As mentioned in Section 1, there are four types of uncertainty in a system, of which perturbation in the parameters can be
considered as the most important one. In the following paragraphs, we discuss this type of uncertainty (Type B) in the con-
text of multi-objective search spaces.

There is a set of robust solutions for a multi-objective problem because of its nature as discussed in Section 1. Without
loss of generality, the robust multi-objective optimization considering uncertainties in the parameters is formulated as a
minimization problem as follows:

Minimize : Fð~xþ~dÞ ¼ f 1ð~xþ~dÞ; . . . ; f oð~xþ~dÞ ð2:1Þ
Subject to : gið~xþ~dÞP 0; i ¼ 1;2; . . . ;m ð2:2Þ

hið~xþ~dÞ ¼ 0; i ¼ 1;2; . . . ;p ð2:3Þ
Li 6 xi 6 Ui; i ¼ 1;2; . . . ;n ð2:4Þ

where~x is the set of parameters,~d indicates the uncertainty vector corresponding to each variable in~x, o is the number of
objective functions, m is the number of inequality constraints, p is the number of equality constraints, [Li, Ui] is the boundary
of the ith variable.

In robust single-objective optimization, there is a single robust solution that might be either the global or a local opti-
mum. The ultimate goal is to find the best solution that is not sensitive to the probable uncertainties. Since there is one com-
parison criterion (the objective function), the solutions can be compared easily with inequality/equality operators. In robust
multi-objective optimization, however, two solutions cannot be compared with similar operators as in robust single-objec-
tive optimization. This is due to the fact that two solutions in a multi-objective search space might be incomparable
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