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a b s t r a c t

In this paper, we propose a new receding horizon disturbance attenuator (RHDA) for
Takagi–Sugeno (T–S) fuzzy switched Hopfield neural networks with external disturbance.
First, a new set of linear matrix inequality (LMI) conditions is proposed for the finite termi-
nal weighting matrix of the receding horizon cost function with a cross term. Second, under
this condition, we show that the proposed RHDA attenuates the effect of external distur-
bance on T–S fuzzy switched Hopfield neural networks with a guaranteed infinite horizon
H1 performance. In addition, we prove that the proposed RHDA guarantees internal
stability in closed-loop systems. A numerical example is presented to describe the effec-
tiveness of the proposed RHDA scheme.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hopfield neural networks [23] have been extensively investigated in recent years because of their widespread use in
modeling many phenomena associated with signal processing, pattern recognition, associative memory, static image pro-
cessing, and particularly in solving difficult optimization problems [21]. Therefore, the various stability properties (e.g.,
asymptotic, exponential, and stochastic stability) need to be studied for different types of Hopfield neural networks.

Switched systems form an important class of hybrid systems consisting of a finite number of subsystems described by
dynamic systems and a switching signal that specifies the switching among them. Switched systems are formed when
dynamic systems undergo abrupt changes due to parameter changes, component failures, or element switching. Experi-
ments using various techniques have shown many important and interesting results for switched systems, owing to their
theoretical and practical significance [20,44,45,31]. Recently, the use of switched Hopfield neural networks, whose subsys-
tems constitute a set of Hopfield neural networks, has been widely applied in the field of high-speed signal processing and in
gene selection in DNA microarray analyses [37,19,30]. Some stability conditions for switched Hopfield neural networks were
investigated in [25,27,1]. New results on learning, filtering, and estimation in switched Hopfield neural networks were pre-
sented in [3,4,9,7,10].

Recently, the Takagi–Sugeno (T–S) fuzzy model approach was used to describe neural networks and the problem of sta-
bility analysis for T–S fuzzy Hopfield neural networks was extensively studied in [24,17,26]. Among the different types of
fuzzy methods, the T–S fuzzy models [35,36] have attracted particular attention from researchers because these models
can effectively approximate a wide class of complex nonlinear systems by using some local linear subsystems. The T–S fuzzy
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model approach is a multi-model approach in which some linear models are combined to form an overall single model
through nonlinear membership functions to represent nonlinear system dynamics. The nonlinear system dynamics are cap-
tured by a set of fuzzy rules that characterize local correlation in the state space. Some new results on learning, identifica-
tion, filtering, and stabilization in T–S fuzzy Hopfield neural networks were presented in [2,5,6,8,11,14].

The receding horizon approach is now accepted as an important feedback strategy in many industry fields, especially in
process industries [38,39,28,22,40,14]. This approach has many advantages, such as guaranteed robustness and adaptation to
switched parameters. Since control methods based on the receding horizon approach are computed repeatedly under a cost
function, the approach can adapt to unanticipated changes in system parameters. In [29], the receding horizon approach was
applied to the nonlinear H1 control problem. However, the inverse optimality based result was obtained simply via a Fake
Hamilton–Jacobi–Isaacs equation. Recently, the receding horizonH1 approach was proposed to solve chaos synchronization
and nonlinear neural control problems in [12,13], respectively. To the best of our knowledge, the problem of receding hori-
zon disturbance attenuation for T–S fuzzy switched Hopfield neural networks with external disturbance has not been inves-
tigated thus far and remains an open and challenging research topic.

In this paper, we propose a new receding horizon disturbance attenuator (RHDA) for T–S fuzzy switched Hopfield neural
networks with external disturbance. A new set of sufficient linear matrix inequality (LMI) conditions is proposed for the
finite terminal weighting matrix of the receding horizon cost function with a cross term, under which the proposed RHDA
reduces the effect of external disturbance in T–S fuzzy switched Hopfield neural networks. The proposed RHDA guarantees
asymptotic stability in T–S fuzzy switched Hopfield neural networks without external disturbance. The finite terminal
weighting matrix in the receding horizon cost function can be determined by solving a set of LMI conditions. This LMI prob-
lem can be solved efficiently by using standard convex optimization software [18].

This paper is organized as follows. In Section 2, we formulate the problem. In Section 3, a new set of sufficient LMI con-
ditions is proposed for the receding horizon disturbance attenuation of T–S fuzzy switched Hopfield neural networks with
external disturbance. In Section 4, a numerical example is given, and finally, conclusions are presented in Section 5.

2. Problem formulation

Consider the following T–S fuzzy switched Hopfield neural network:

Fuzzy Rule Ri
a :

IF x1 is li
a1 and � � �xs is li

as THEN
_xðtÞ ¼ Aði;aÞxðtÞ þWði;aÞ/ðxðtÞÞ þ uðtÞ þwðtÞ; ð1Þ

where xj ðj ¼ 1;2; . . . ; sÞ is the premise variable, li
aj ði ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; sÞ is the fuzzy set that is characterized by a

membership function, r is the number of IF-THEN rules, s is the number of premise variables,
xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ�T 2 Rn is the state vector, Aði;aÞ 2 Rn�n is the negative diagonal matrix representing the self-feed-

back term, Wði;aÞ 2 Rn�n is the connection weight matrix, /ðxðtÞÞ ¼ ½/1ðxðtÞÞ;/2ðxðtÞÞ; . . . ;/nðxðtÞÞ�
T : Rn ! Rn is the nonlinear

function vector satisfying the global Lipschitz condition with Lipschitz constant L/ > 0;uðtÞ 2 Rn is the control input vector,
and wðtÞ 2 Rn is the external disturbance vector. Here, a is a switching signal that can have any value from the finite set
f1;2; . . . ;Ng. The matrices ðAði;aÞ;Wði;aÞÞ are allowed to take values in the finite set fðAði;1Þ;Wði;1ÞÞ; . . . ; ðAði;NÞ;Wði;NÞÞg
at an arbitrary time for i ¼ 1;2; . . . ; r. This study assumes that the switching rule a is not known a priori and its instantaneous
value is available in real time. A standard fuzzy inference method is used, and system (1) is inferred as follows:

_xðtÞ ¼
Xr

i¼1

hði;aÞðxÞ Aði;aÞxðtÞ þWði;aÞ/ðxðtÞÞ þ uðtÞ þwðtÞ½ �; ð2Þ

where x ¼ ½x1;x2; . . . ;xs�T ;hði;aÞðxÞ ¼ wði;aÞðxÞ=
Pr

j¼1wðj;aÞðxÞ;wði;aÞ is the membership function of the system with respect to
the fuzzy rule Ri

a ði ¼ 1;2; . . . ; rÞ. hði;aÞðxÞ can be regarded as the normalized weight of each IF-THEN rule and it satisfies
hði;aÞðxÞP 0 and

Pr
i¼1hði;aÞðxÞ ¼ 1. The indicator function is defined as nðtÞ ¼ ½n1ðtÞ; n2ðtÞ; . . . ; nNðtÞ�T , where nkðtÞ ¼ 1 when

the neural network is described by the k-th mode ðAði; kÞ;Wði; kÞÞ, and nkðtÞ ¼ 0 otherwise ðk ¼ 1;2; . . . ;NÞ. This indicator
function can be used to derive the model of the T–S fuzzy switched Hopfield neural networks (2) as

_xðtÞ ¼
XN

k¼1

Xr

i¼1

nkðtÞhði;kÞðxÞ Aði; kÞxðtÞ þWði; kÞ/ðxðtÞÞ þ uðtÞ þwðtÞ½ �; ð3Þ

where
PN

k¼1nkðtÞ ¼ 1 is satisfied under all switching rules. The following finite horizon cost with a cross term is associated
with the T–S fuzzy switched Hopfield neural network (3):

Jðxðt0Þ; t0; t1Þ ¼
Z t1

t0

xTðtÞ uTðtÞ
� � Q S

ST R

� �
xðtÞ
uðtÞ

� �
� c2wðtÞT wðtÞ

� �
dt þ xTðt1ÞQ f xðt1Þ; ð4Þ

where

Q S

ST R

� �
P 0; Q P 0; R > 0; Q f ¼ Q T

f > 0; ð5Þ
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