Best practice guidelines

Evidence of economic deprivation and female foeticide in a United Nations global births by gender data set

Victor Grech *
Academic Department of Paediatrics, Medical School, Mater Dei Hospital, Malta

A R T I C L E I N F O

Keywords:

Sex ratio
Birth rate/*trends
Infant
Newborn
Economics
Stress
Psychological/physiopathology

Abstract

Introduction: The male-to-female ratio of live births is expressed as the ratio of male births divided by total births (M/F). Males are produced approximately 3% in excess. A large number of factors have been found to influence M/F. Stress and privation reduces M/F. Gender preference (which almost invariably favours males) with selective female foetal abortion increases M/F. This study was carried out in order to assess a United Nations data set for evidence of global trends in M / F in relation to broad socioeconomic conditions and male preference. Methods: Data (M/F and total births, 1955-2009) was obtained from the United Nations (UN) Department of Economic and Social Affairs, Population Division, Population Estimates and Projection Section. The following regions were analysed: more developed countries, less developed countries and least developed countries (as defined by the UN General Assembly). Results: More developed countries: M/F was initially stable at 0.53 up to 1979 then fell to 0.525 . Less developed countries: M/F was initially stable at 0.53 then rose after 1984 to 0.545 with a rise in male births and a fall in female births (estimated female birth deficit $=48734993$). Least developed countries: exhibited a stable M/F of 0.52 (all $p \ll 0.001$). Discussion: This study has confirmed, on a global scale, that least developed countries have the lowest M/F. The rise in M/F in developed countries (which includes Asia) confirms widespread selective female foeticide due to cultural male preference. The declining trend in M / F in developed countries has been previously noted and remains unexplained.

© 2015 Elsevier Ireland Ltd. All rights reserved.

Contents

1. Introduction 855
1.1. Stress and economics 856
1.2. Gendercide 856
2. Methods 856
2.1. Data 856
2.2. Statistics 857
3. Results 857
4. Discussion 857
4.1. Stress and economics 857
4.2. Gendercide 857
Conflict of interest 858
References 858
[^0]
1. Introduction

The male-to-female ratio of live births is expressed as the ratio of male live births divided by total live births (M / F), and males are produced in an excess of approximately 3\% [1].

1.1. Stress and economics

A large number of external factors have been found to influence this ratio [1,2]. Of particular relevance, stress reduces M / F. Such stress may be acute and may be induced by natural disasters [3] or by man-made events such as contracting economies [4].

This accords with the Trivers-Willard hypothesis (1973), which suggests that a male who reaches reproductive age in good condition is expected to out-reproduce a female in similar condition. Conversely, if both are in poor condition, a female is expected to out-reproduce a brother. This is because a weak son would compete poorly with stronger males for the same cohort of females, thus producing fewer offspring than a weak female daughter would [5].

The hypothesis holds that natural selection has therefore developed mechanisms by which pregnant females subjected to environmental stressors manipulate M / F by culling male foetuses that are least likely to eventually sire grandchildren and pass on their mothers' genes [5].

Chronic stress also plays a part. Caloric availability per capita was shown to correlate positively with M / F in over 200 countries. The same study also demonstrated that increases or decreases in caloric availability were associated with corresponding changes in countries' M / F. The authors speculated that this was probably related to higher intrauterine male mortality rates due to nutritional deficiencies and associated stressors since male foetuses require more maternal resources [6].

1.2. Gendercide

Man has also deliberately modified M/F. Due to the patriarchal nature of most human societies, the termination of female foetuses is a far commoner occurrence than the termination of males. Male preference resulting in a higher proportion of males at all ages, particularly in Asia, has been attributed to the Confucian patriarchal tradition that is characterised by strong son preference and female subordination [7,8].

Modern and scientifically accurate methods for antenatally determining gender have been available as early as 1975 in China with the use of chorionic villous sampling [9]. Antenatal sexing was later facilitated, worldwide, by ultrasound technology in the 1980s [10].

This study was carried out in order to assess a United Nations data set for broad evidence of economic stress influencing M / F and for equally broad evidence of selective female abortion.

2. Methods

2.1. Data

Data were obtained from the United Nations Department of Economic and Social Affairs, Population Division, Population Estimates and Projection Section [11]. This was available as aggregated 5-year totals for birth and 5-year averages for M / F, by region. These two variables were used to calculate male and female births. Three categories were analysed:

More developed regions comprised Europe, Northern America, Australia, New Zealand and Japan.
Less developed regions comprised all regions of Africa, Asia (except Japan), Latin America and the Caribbean including Melanesia, Micronesia and Polynesia, but excluded all those countries in the next (following) category.
Least developed countries as defined by the United Nations General Assembly in its resolutions included 49 countries in June 2013: 34 in Africa, 9 in Asia, 5 in Oceania and one in Latin America and the Caribbean. The group included 49 countries-Afghanistan, Angola, Bangladesh, Benin, Bhutan, Burkina Faso, Burundi, Cambodia, Central African Republic, Chad, Comoros, Democratic Republic of
Table 1
Calculated male and female births (from total births and M / F), from which upper and lower confidence intervals (UCI, LCI) were then calculated.

		1950-1954	1955-1959	1960-1964	1965-1969	1970-1974	1975-1979	1980-1984	1985-1989	1990-1994	1995-1999	2000-2004	2005-2009
More	Male	49839319	50169575	49032684	45213640	43701470	42084016	41759317	41456572	37762690	34921394	34937716	36790769
Developed	Female	44197132	45391521	43481815	40095115	38754133	37319788	37782239	37508327	34166244	31595547	31610314	33286886
	Total	94036451	95561096	92514499	85308755	82455603	79403804	79541556	78964899	71928934	66516941	66548030	70077655
	UCI	0.5301	0.5251	0.5301	0.5301	0.5301	0.5301	0.5251	0.5251	0.5251	0.5251	0.5251	0.5251
	M/F	0.5300	0.5250	0.5300	0.5300	0.5300	0.5300	0.5250	0.5250	0.5250	0.5250	0.5250	0.5250
	LCI	0.5299	0.5249	0.5299	0.5299	0.5299	0.5299	0.5249	0.5249	0.5249	0.5249	0.5249	0.5249
Less	Male	183014824	193199044	215846257	230282608	236045909	232457879	250141694	275283458	263405287	247233847	247650665	253768348
Developed	Female	162296165	171327455	191410832	204212878	209323731	206141892	221823767	239265062	224382281	210606610	206754224	211861648
	Total	345310989	364526499	407257089	434495486	445369640	438599771	471965461	514548520	487787568	457840457	454404889	465629996
	UCI	0.5301	0.5301	0.5300	0.5300	0.5300	0.5300	0.5300	0.5350	0.5400	0.5400	0.5450	0.5450
	M/F	0.5300	0.5300	0.5300	0.5300	0.5300	0.5300	0.5300	0.5350	0.5400	0.5400	0.5450	0.5450
	LCI	0.5299	0.5299	0.5300	0.5300	0.5300	0.5300	0.5300	0.5350	0.5400	0.5400	0.5450	0.5450
Least	Male	25762925	28492066	31793472	35671585	39844773	44309296	49371781	53837046	58669522	63830323	68216799	72214280
Developed	Female	23781162	26300369	29347820	32927616	36779790	40900889	45573952	49695734	54156481	58920298	62969353	66659336
	Total	49544087	54792435	61141292	68599201	76624563	85210185	94945733	103532780	112826003	122750621	131186152	138873616
	UCI	0.5201	0.5201	0.5201	0.5201	0.5201	0.5201	0.5201	0.5201	0.5201	0.5201	0.5201	0.5201
	M/F	0.5200	0.5200	0.5200	0.5200	0.5200	0.5200	0.5200	0.5200	0.5200	0.5200	0.5200	0.5200
	LCI	0.5199	0.5199	0.5199	0.5199	0.5199	0.5199	0.5199	0.5199	0.5199	0.5199	0.5199	0.5199

https://daneshyari.com/en/article/3916729

Download Persian Version:

https://daneshyari.com/article/3916729

Daneshyari.com

[^0]: * Department of Paediatrics, Mater Dei Hospital, Malta. Tel.: + 35699495813.

 E-mail address: victor.e.grech@gov.mt.

