
Information Sciences 363 (2016) 198–220

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A survey of siphons in Petri nets

GaiYun Liu

a , b , ∗, Kamel Barkaoui b

a School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, PR China
b Cedric Lab and Computer Science Department, Conservatoire National des Arts et Métiers, Paris 75141, France

a r t i c l e i n f o

Article history:

Received 31 December 2014

Revised 28 June 2015

Accepted 21 August 2015

Available online 29 August 2015

Keywords:

Concurrent system

Petri net

Deadlock

Siphon

Supervisor

a b s t r a c t

Petri nets have gained increasing usage and acceptance as a basic model of asynchronous con-

current systems since 1962. As a class of structural objects of Petri nets, siphons play a critical

role in the analysis and control of systems modeled with Petri nets. This paper surveys the

state-of-the-art siphon theory of Petri nets including basic concepts, computation of siphons,

controllability conditions, and deadlock control policies based on siphons. Some open prob-

lems on siphons are discussed, such as the maximally permissive supervisor design problems

based on siphons and the application of siphons to robust supervisory control. This survey is

expected to serve as a reference source for the growing number of Petri net researchers and

practitioners.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In 1962, Petri invented a net-theoretic approach to model and analyze communication systems in his thesis [146] . This

model was based on the concepts of asynchronous and concurrent operation by the parts of a system and the realization

that relationships between the parts could be represented by a net. A large amount of research has been done on both

the nature [153] and the application of Petri nets, and their application seems to be expanding [43,51,147] . Petri nets have

been proven to be very useful in the modeling, analysis [202,203] , simulation, and control of concurrent systems [34,35,

66–81,92,94,98,108,111,113,123,124,133,137,150,151,165,183,184,189,196–198,205–213] .

The concurrent flow of multiple jobs in a resource allocation system (RAS), which all compete for a finite set of resources, can

lead to a deadlock. A deadlock occurs when a set of jobs are in a “circular wait” state [122] , where each job in the set is waiting

for a resource being held by another job in the set while occupying a resource that is, in turn, needed by one of the other jobs [3] .

The notion of partial or total deadlock is frequent and validation before implementation is preferable to reduce the risks.

Due to the easy and concise description of the concurrent execution of processes and the resource sharing by Petri nets, many

methods to verify deadlock-freeness and to synthesize controllers using structural theory or reachability graph analysis have

been proposed over the past two decades. Traditionally, a deadlock control policy can be evaluated by three performance criteria:

structural complexity, behavioral permissiveness, and computational complexity [25–27] . A maximally permissive supervisor

has great potential to lead to high utilization of system resources. A supervisor with a simple structure can decrease the hardware

and software costs. A policy with low computational complexity means that it can be applied to real-world large-sized systems.

Many researchers have developed deadlock control algorithms that can obtain liveness-enforcing supervisors with maximal per-

missibility, a simple supervisory structure, and low computational complexity. Generally, deadlock control policies based on the

state space analysis can approach the maximal permissive behavior, but suffer from the state explosion problem [28–31,140,141] .

∗ Corresponding author. At: School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, PR China. Tel.: +8613572429091.

E-mail addresses: lg_2005@163.com , gaiyunliu@gmail.com (G.Y. Liu), kamel.barkaoui@cnam.fr (K. Barkaoui).

http://dx.doi.org/10.1016/j.ins.2015.08.037

0020-0255/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2015.08.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2015.08.037&domain=pdf
mailto:lg_2005@163.com
mailto:gaiyunliu@gmail.com
mailto:kamel.barkaoui@cnam.fr
http://dx.doi.org/10.1016/j.ins.2015.08.037

G.Y. Liu, K. Barkaoui / Information Sciences 363 (2016) 198–220 199

On the contrary deadlock control policies based on the structural analysis of Petri nets avoid in general the state explosion prob-

lem successfully [6,7,11] . Resource circuits and siphons are two typical structural objects which have been widely studied in

deadlock control area. This paper will focus on siphons and their applications to the development of deadlock control policies.

The idea behind siphon was first introduced by Commoner and Holt in 1971 for a restricted class of Petri nets called Free-

Choice Petri nets [37] . Then Hack in his thesis showed important results for the class of Free-Choice Petri nets and solves the

deadlocks (i.e., siphons) and unpredictability problem for a restricted class of systems called Production Schemata [56] . Most of

the studies on Petri nets around this time were in the form of theses, dissertations, and reports that are neither readily available

nor in wide circulation. From the internet we can find the first paper which gave the name “siphon” to this special structural

objects in 1975 in [14] . A nonempty subset of places S in a net N is called a siphon (also known as a deadlock or co-trap) if • S ⊆S • ,

i.e., every transition having an output place in S has an input place in S . We use a siphon instead of a deadlock since the latter

may lead to terminological misunderstandings and it is used for a circular waiting condition or behavior in computer science

[38,139] .

To acquaint the reader with Petri nets, in Section 2 , we first present their formal definition and the related concepts, including

structural and behavioral properties. The concepts of elementary and dependent siphons are given in this section. A number of

important subclasses of Petri nets and their relationships are discussed. In Section 3 , different methods of siphon computation are

recalled. Section 4 presents controllability conditions of siphons. Section 5 reviews deadlock control policies based on siphons,

including the enumeration of strict minimal siphons, mathematical programming techniques, elementary siphons, deadlock

control combined with reachability graph analysis and that based on siphons in Gadara nets, and robust deadlock control policies.

Their advantages and limitations are discussed. Section 6 shows some open problems. Section 7 concludes this survey.

Because of the breadth of the applications and depth of the investigations into Petri nets, we touch on the results available in

the literature. We refer the interested reader to the original works cited in the references for the proofs and details of the related

research.

2. Preliminary

2.1. Basics of Petri nets

A generalized Petri net [109,139] is a four-tuple N = (P, T , F , W) where P and T are finite and non-empty. P is the set of places

and T is the set of transitions with P ∩ T = ∅ . F ⊆ (P × T) ∪ (T × P) is called a flow relation of the net, represented by arcs with

arrows from places to transitions or from transitions to places. W : (P × T) ∪ (T × P) → N is a mapping that assigns a weight to

an arc: W (f) > 0 if f ∈ F and W (f) = 0 otherwise, where N = { 0 , 1 , 2 , . . . } . If ∀ f ∈ F , W (f) = 1 , then N = (P, T , F , W) is called an

ordinary net and denoted as N = (P, T , F). A Petri net N = (P, T , F , W) is pure (self-loop free) if ∀ x , y ∈ P ∪ T , W (x , y) > 0 implies

W (y, x) = 0 . A pure Petri net N = (P, T , F , W) can be represented by its incidence matrix [N], where [N] is a | P | × | T | integer matrix

with [N] (p, t) = W (t, p) − W (p, t).

A marking M of a Petri net N assigns to each place a nonnegative integer. To facilitate linear algebraic analysis, a marking M is

usually treated as a | P |-vector. M (p) denotes the number of tokens in place p . For economy of space, �p ∈ P M (p) p is used to denote

vector M . Place p is marked at M if M (p) > 0. Given a subset S ⊆ P , the sum of tokens in all the places in S is denoted by M (S) with

M(S) =

∑

p∈ S M(p). S is marked (unmarked) at M if M (S) > 0 (M(S) = 0). (N , M 0) is called a net system and M 0 is called an initial

marking of N .

A transition t is enabled (disabled) at M if ∀ p ∈

• t (∃ p ∈

• t), arc (p , t) is enabled (disabled). This fact can be denoted by M [t 〉 .
Firing an enabled transition t reaches a new marking M

′ such that for each place p , M

′ (p) = M(p) − W (p, t) + W (t, p), denoted

by M [t 〉 M

′ . Marking M

′ is said reachable from M if there exists a finite sequence of transitions σ = t 0 t 1 . . . t n and markings M 1 ,

M 2 , . . . , and M n such that M[t 0 〉 M 1 [t 1 〉 . . . M n [t n 〉 M

′ holds. Specially, when σ is an empty sequence, we have M [σ 〉 M . The set of

markings reachable from M 0 in N is called the reachability set of the marked Petri net (N , M 0) and denoted as R (N , M 0). Marking

M ∈ R (N , M 0) is legal if M 0 ∈ R (N , M).

Given a marked Petri net (N , M 0), a transition t ∈ T is live at M 0 if ∀ M ∈ R (N , M 0), ∃ M

′ ∈ R (N , M), M

′ [t 〉 holds. A transition t ∈ T

is said to be dead at marking M ∈ R (N , M 0), if �M

′ ∈ R (N , M), M

′ [t 〉 . (N , M 0) is live at M 0 if ∀ t ∈ T , t is live at M 0 . Otherwise, (N , M 0)

is non-live. (N , M 0) is deadlocked at M if �t ∈ T , M [t 〉 , where M ∈ R (N , M 0) and M is called a dead marking. (N , M 0) is deadlock-free

if ∀ M ∈ R (N , M 0), ∃ t ∈ T , M [t 〉 .
A marked net is bounded if ∃ k ∈ N , ∀ M ∈ R (N , M 0), ∀ p ∈ P , M (p) ≤ k . A net N is structurally bounded if it is bounded for any

initial marking.

A P(T)-vector is a column vector I(J) : P (T) → Z indexed by P (T), where Z is the set of integers. P-vector I is called a P-

invariant (place invariant [193]) if I � = 0 and I T [N] = 0 T . Here 0 is a zero vector. A P-vector I is denoted by �p ∈ P I (p) p for economy

of space. For example, I = (1 , 0 , 0 , 0 , 2)T is written as I = p 1 + 2 p 5 . P-invariant I is a P-semiflow if every element of I is non-

negative. || I|| = { p ∈ P | I(p) � = 0 } is called the support of I . || I|| + = { p ∈ P | I(p) > 0 } denotes the positive support of P-invariant

I and || I|| − = { p ∈ P | I(p) < 0 } denotes the negative one. I is called a minimal P-invariant if || I || is not a proper superset of the

support of any other and the greatest common divisor of its elements is one. If I is a P-invariant of (N , M 0), then ∀ M ∈ R (N , M 0),

I T M = I T M 0 .

Let x ∈ P ∪ T be a node of net N . •x = { y ∈ P ∪ T | (y, x) ∈ F } is called the preset of x , while x • = { y ∈ P ∪ T | (x, y) ∈ F } is called

its postset. This notation can be extended to a set of nodes as follows: given S ⊆ P ∪ T , •S = ∪ x ∈ S •x and S • = ∪ x ∈ S x •. Let S be a

non-empty subset of places. S ⊆ P is a siphon (trap) if • S ⊆ S • (S • ⊆ • S) holds.

Download English Version:

https://daneshyari.com/en/article/391678

Download Persian Version:

https://daneshyari.com/article/391678

Daneshyari.com

https://daneshyari.com/en/article/391678
https://daneshyari.com/article/391678
https://daneshyari.com

