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a b s t r a c t 

When using Petri nets to investigate deadlock control, structural analysis techniques are 

applied, which are based on solving systems of linear algebraic equations. To gain an ex- 

tra computational speed-up when solving sparse linear systems, we examine a sequen- 

tial clan-composition process, represented by a weighted graph. The system decomposi- 

tion into clans is represented by a weighted graph. The comparative analysis of sequential 

composition for subgraphs and edges (pairwise) is presented. The task of constructing a se- 

quence of systems of lower dimension is called an optimal collapse of a weighted graph; 

the question whether it is NP-complete remains open. Upper and lower bounds for the col- 

lapse width, corresponding to the maximal dimension of systems, are derived. A heuristic 

greedy algorithm of (quasi) optimal collapse is presented and validated statistically. The 

technique is applicable for solving sparse systems over arbitrary rings (fields) with sign. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Solving systems of linear algebraic equations and inequalities plays a key role in the structural analysis techniques of 

Petri nets for deadlock control [5,16,19,21,22,29,36] , and Petri net models of flexible manufacturing systems (FMS) are ex- 

tensively studied in the literature [6,7,14,15,17,31] . Using these techniques, a system, containing equations and inequalities, 

is transformed into a purely equational system (possibly with additional variables), but the high dimensionality of models 

of real-life manufacturing systems makes their analysis difficult from the computational point of view because it implies 

solving complex Diophantine systems [16,21,32] . 

Indeed, many tasks of modern science and technology can be reduced to solving systems of linear equations and inequal- 

ities [28] . To solve systems in fields, a variety of direct and iterative methods have been developed based on system matrix 

factorization into diagonal, upper- and lower-triangular matrices [9,24,35] . The time complexity of solutions is polynomial, 

chiefly cubic, with respect to the number of the matrix rows (columns). To deal with sparse matrices, special techniques 

of decomposition were introduced based on permutations of the matrix rows and columns [9,27] and the problem is often 

reduced to one of graph decomposition [11,13,37] . 

Solving systems in rings , for instance Diophantine systems, is based on Smith and Hermite normal forms and unimodular 

transformations of the matrix [8,10,12,25] . The best known methods use time that is a fourth-degree polynomial [10,25] but 

as mentioned in [12] the estimations should be exponential when GCD operation complexity is involved. 

Some domains require solving systems over rings in monoids , for instance a Diophantine system in nonnegative integers. 

Such tasks arise in Petri net theory [23] and lead to developing special methods [3,26] which can be traced to early Fourier 

works and collate coefficients with opposite signs. The number of basis solutions can grow rapidly and the space complexity 

is estimated as exponential [26] . This fact hampers the application of matrix methods for real-life systems analysis. 
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Table 1 

The legend of matrix A decomposition into clans. 
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In [33] , a decomposition of a system was presented that is entirely based on the sign concept. It factors the source system 

into a set of subsystems called clans ; the obtained block structure of the matrix is a union of a block column and diagonal 

block matrix. Solving systems for each clan and then a composition system gives a considerable speed-up. The composition 

of clans can be applied for solving systems in arbitrary rings (fields) with sign as well. 

In [33] we implemented the simultaneous composition of all clans in the source system, which meant solving the com- 

position system as a monolithic entity. In some cases, the size of this composition system is considerable, which results 

in high total complexity when solving the source system. The goal of the present work is to formalize the task of sequen- 

tially composing a linear system’s clans and to design efficient algorithms for its solution. The results can be considered a 

generalization to arbitrary matrices with sign of the technique of Petri net decomposition into functional subnets and their 

subsequent re-composition [34] . 

2. Solving linear systems via composition of their clans 

We study a system of linear algebraic equations of the following form: 

A · x̄ = b̄ , (1) 

where A is a matrix of coefficients of dimension m × n , x̄ is a vector-column of unknowns of dimension n and b̄ is a vector- 

column of free terms of dimension m . When b̄ = 0 , the system is said to be homogeneous, and when b̄ � = 0 , heterogeneous. 

As in [33] , the sets of coefficients, free terms, and unknowns are not specified exactly. We only suppose that the alge- 

braic structure of matrix A elements includes a sign concept and that there is a known method for solving system ( 1 ) and 

representing its general solution in the following form: 

x̄ = x̄ ′ + G · ȳ , (2) 

where G · ȳ is a general solution of the corresponding homogenous system, and x̄ ′ is a (minimal) particular solution of the 

heterogeneous system ( 1 ). 

The compositional method for solving system ( 1 ), presented in [33] , consists of the following stages: 

I. Decomposition of a system into clans. 

II. Finding a general solution for each clan. 

III. Composition of clans. 

Recall that, a clan is a subset of equations formed as a transitive closure of a near relation ; two equations are near if they 

contain a variable with the same sign; variables, which enter only one clan, are called internal variables of a clan; variables 

which enter more than one clan are called contact variables for those clans. We have previously shown that contact variables 

always belong to exactly two clans and enter them with opposite signs. As a result of decomposition into clans, the following 

block form of matrix A is obtained: 

A = 
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∥∥∥∥∥∥∥∥∥∥∥
. 

With respect to clans and subsets of variables, the blocks of matrix A are described in Table 1 , where C i denotes clans, 
� 

X i – internal variables of clans, X 

0 – contact variables. Nonzero columns of submatrix A 

0 ,i form a set 
� 

X i ⊂ X 0 of contact 

variables of the clan C i and a pair ( 
� 

X i , 
� 

X i ) defines all variables of a clan C i with nonzero coefficients. We have previously 

shown that an arbitrary contact variable x j ∈ X 0 belongs to precisely two clans and enters these clans with opposite signs. 

In what follows, the notations I(x ) and O (x ) denote input and output clans, respectively, of a contact variable x . Similarly, 
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