Information Sciences 257 (2014) 54-69

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins ==

Mining frequent items in data stream using time fading model @CmssMark

Ling Chen*"*, Qingling Mei °

2 Department of Computer Science, Yangzhou University, Yangzhou 225127, China
bState Key Lab of Novel Software Tech, Nanjing University, Nanjing 210093, China

ARTICLE INFO ABSTRACT

ArtiC{e history: We investigate the problem of finding frequent items in a continuous data stream, and
Received 24 March 2012 present an algorithm named A-HCount for computing frequency counts of stream data
Received in revised form 26 August 2013 based on a time fading model. The algorithm uses r hash functions to estimate the density

Accepted 1 September 2013

Available online 10 September 2013 values of stream data items. To emphasize the importance of recent data items, a time fad-

ing factor is used. For a given error bound, our algorithm can detect approximate frequent
items under a certain probability using limited number of memory space. The memory
requirement only depends on the number of different data items and the number of hash
Frequent data item functions used. Experimental results on synthetic and real data sets show that our algo-
Fading factor rithm outperforms other methods in terms of accuracy, memory requirement, and process-

Hash function ing speed.

Keywords:
Stream data mining

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, more attentions have been paid to stream data mining. Detecting frequent data items is an important task
in stream data analysis. Frequency is a fundamental characteristic in many data mining tasks such as association rule mining
and iceberg queries. It has applications in many areas such as sensor data mining, business decision support, analysis of web
query logs, direct marketing, network measurement, and internet traffic analysis. Correspondingly, the stream data could be
stock tickers, bandwidth statistics for billing purposes, network traffic measurements, web-server click streams, and data
from sensor networks.

Traditional mining algorithms assume a finite dataset and multiple scans on the data. For the stream data applications,
the volume of data is usually too large to be stored in memory or to be scanned for more than once. For data streams, data
items can only be sequentially accessed, and random access is prohibited. Therefore, traditional frequent item mining algo-
rithms are not applicable to stream data. Furthermore, because of the high throughput of the data streams, possibly in the
speed of gigabytes per second, any feasible algorithm for detecting frequent data item must perform data processing and
query fast enough so as to match the speed of arriving data in the stream. In addition, the algorithm can use only limited
memory space and store only the sketch or synopsis of the data items in the stream.

Solutions for finding frequent items in stream data have been proposed recently. Several algorithms use random sampling
[10,12,13,16,17,20,25,32,34,39,45] to estimate the frequencies of the data items. For example, the Sticky Sampling [34] algo-
rithm presented by Manku and Motwani is a sampling based algorithm for computing an ¢-deficient synopsis over a data
stream. It is a probabilistic one-pass algorithm that provides an accuracy guarantee on the set of frequent data items and
their frequencies reported. The second class of such algorithms are deterministic algorithms [1,5,11,19,27,31,37,38]. The
MG algorithm by Misra and Gries [37] is a well-known deterministic algorithm to detect frequent stream data.

* Corresponding author at: Department of Computer Science, Yangzhou University, Yangzhou 225127, China. Tel.: +86 514 87870026; fax: +86 514
87887937.
E-mail addresses: yzulchen@gmail.com (L. Chen), mql859@163.com (Q. Mei).

0020-0255/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2013.09.007


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2013.09.007&domain=pdf
http://dx.doi.org/10.1016/j.ins.2013.09.007
mailto:yzulchen@gmail.com
mailto:mql859@163.com
http://dx.doi.org/10.1016/j.ins.2013.09.007
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

L. Chen, Q. Mei/Information Sciences 257 (2014) 54-69 55

In many applications, recent data in the stream is more meaningful. For instance, in an athlete ranking system, more re-
cent records typically should carry more weight. One way to handle such problem is to use a sliding window model
[2,4,18,22,30,42]. In this model, only the most recent data items in a time period of a fixed length are stored and processed,
and only the frequent data items in this period are detected. The advantage of this method is that it can get rid of the stale
data and only consider the fresh data, which are more meaningful in many cases. To emphasize the importance of the recent
data, time fading model [8,35,43,44] also can be used for frequency measures in data stream. In this model, data items in the
entire stream are taken into account to compute the frequency of each data item, but more recent data items contribute
more to the frequency than the older ones. This is achieved by introducing a fading factor 4 (0 <4< 1). A data item which
arrived n time points in the past is weighted A". Thus, the weight is exponentially decreasing. In general, the closer to 1
the fading factor / is, the more important the history is taken into account. There are two advantages of the time fading mod-
el over the sliding window model. One is that in the time fading model, frequency takes into account the old data items in the
history, while the sliding window model only observes within a limited time window and entirely ignores all the data items
outside the window. This is undesirable in many real applications. The second is that in the time fading model, when more
data arrive continuously, the frequency changes smoothly without a sudden jump which may occur in the sliding window
model.

In real world applications, since there could be a huge number of different data items in the stream, it is impracticable to
set a counter for each data item. But when using limited memory space, we cannot keep exact frequency counts for all pos-
sible items. Usually, an error bound is predefined by the user, and we can obtain an approximate result using less memory
space. Therefore, it is necessary to tackle the problem of finding the right form of data structure and related construction
algorithm so that the required frequency counts can be obtained with a bounded error for unbounded input data and limited
memory. In solving this problem, we may end up facing a dilemma. That is, by setting a small error bound, we achieve high
accuracy but suffer in terms of efficiency. On the contrary, a bigger error bound improves the efficiency but seriously de-
grades the mining accuracy. Therefore, we need to achieve good balance between the accuracy of the results and memory
requirement. In this work, we investigate the problem of detecting approximate frequent items using limited number of
memory space under a certain probability.

In this paper, we present an algorithm called i-HCount for computing frequency counts over a user specified threshold on
a data stream based on the time fading model. A fading factor /4 is used to emphasize the importance of the more recent data
items. For a given error ¢ and a threshold s of density, our algorithm can detect ¢-approximate frequent items using

@ In <— %) + ;- memory space under the probability of p, hereM is the number of different data items, r is the number

of hash functions used. Experimental results on synthetic and real data sets show that our algorithm 2-HCount outperforms
other methods in terms of accuracy, memory requirement, and processing speed.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 formally defines the problem and
describes the time fading model. Section 4 describes the framework of our algorithm i-HCount while Section 5 analyzes its
space and time complexity. Section 6 reports and analyzes our experimental results and Section 7 gives conclusions.

2. Related work

Problems related to frequency estimate have been actively studied. Many algorithms for identifying frequent items and
other statistics in the entire data stream have been proposed.

Lossy Counting [34] was among the first algorithms for finding frequent items from a data stream. Lossy Counting is a one-
pass algorithm that provides an accuracy guarantee on the set of frequent data items and their frequencies reported. Given a
user-specified support threshold s, and an error threshold ¢, Lossy Counting guarantees that: (1) All items whose true fre-
quency exceeds sn are detected, where n is the total number of data items processed. Namely, there are no false negatives.
(2) No item whose true frequency is less than (s-¢)n is output. (3) The estimated frequency of any item is at most ¢n less than
its true frequency. Homem and Carvalho [21] presented an algorithm for identifying the k most frequent elements by merg-
ing the commonly used counter-based and sketch-based techniques. The algorithm also provides guarantees on the expected
error estimate, order of elements and the stochastic bounds on the error. Karp et al. [27], and Demaine et al. [11] applied a
deterministic MG algorithm [37] to detect frequent stream data. They reduced the time for processing one data item in MG
algorithm to O(1) by managing all counters in a hash table. The algorithm can easily be adapted to find ¢-approximate fre-
quent items in the entire data stream without making any assumption on the distribution of the item frequencies. This algo-
rithm needs 1/¢ counters for the most frequent data items in the stream. Processing the arrival data items entails
incrementing or decrementing some counters.

Many algorithms for frequent item detecting use random sampling. They make assumptions on the distribution of the
item frequencies, and the quality of their results is guaranteed probabilistically. Whang et al. [39] proposed a probabilistic
algorithm to estimate the number of distinct items in a large collection of data in a single pass. Golab et al. [17] gave an algo-
rithm for the case when the item frequencies are multinomial-distributed. Gibbons and Matias [16] presented sampling
algorithms to recognize top-k queries. Liu et al. [32] presented an error-adaptive and time-aware maintenance algorithm
for frequency counts over data streams. Manku and Motwani [34] advanced a sampling based algorithm called sticky sam-
pling for computing an &-deficient synopsis over a data stream of singleton items. The algorithm scans the stream data and
randomly samples the data items based on three user-specified parameters: support s, error bound ¢, and probability of



Download English Version:

https://daneshyari.com/en/article/391775

Download Persian Version:

https://daneshyari.com/article/391775

Daneshyari.com


https://daneshyari.com/en/article/391775
https://daneshyari.com/article/391775
https://daneshyari.com

