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a b s t r a c t

Granular data and granular models offer an interesting tool for representing data in prob-
lems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into
account. In this paper, we deal with a particular type of information granules, namely inter-
val-valued data. We propose a multilayer perceptron (MLP) to model interval-valued
input–output mappings. The proposed MLP comes with interval-valued weights and
biases, and is trained using a genetic algorithm designed to fit data with different levels
of granularity. In the evolutionary optimization, two implementations of the objective
function, based on a numeric-valued and an interval-valued network error, respectively,
are discussed and compared. The modeling capabilities of the proposed MLP are illustrated
by means of its application to both synthetic and real world datasets.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction and background

Humans exploit abilities of processing non-numeric information clumps (granules) rather than individual numeric values
[29]. Granulation is a suitable way for managing situations characterized by excess or a lack of data [13]. The first situation
occurs, for instance, when there are collections of many objects that exhibit some similarity in terms of their properties or
functional appearance [24]. Here, information granulation provides a vehicle to abstract the complexity of the data set that
one can organize into hierarchies and convert the original problem into manageable subtasks. The second situation occurs,
for instance, when there are noisy data or we encounter qualitative assessments provided by human experts. Here, granu-
lation of information allows modeling the precision of indirect measurements, providing a computationally appealing view
of knowledge [13].

There are a number of formal models of information granules including intervals, sets, rough sets, fuzzy sets, and shad-
owed sets just to name a few existing alternatives. The type of representation formalism is an essential issue to be tackled. Its
choice depends on the available domain knowledge. In [27,28] the authors claim that the implementation of information
granules in terms of interval-valued data is the easiest to comprehend and express by a domain expert, and the simplest
to process when there is a great variability of granule sizes. In interval-valued data, all elements included in the same inter-
val lose their identity in the sense they become fully indistinguishable. In a multidimensional domain, each granule is mod-
eled by a hyperbox, which is a simple geometrical structure fully defined by its boundaries.

In the literature, two different areas are concentrated on interval-valued data, namely Symbolic Data Analysis and Inter-
val Analysis [22]. Symbolic Data Analysis is a new development related to statistics, data mining and computer science. This
paradigm offers a comprehensive approach that consists of summarizing a dataset by means of symbolic variables, e.g.
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interval variables, so as to transform the data set into a smaller and more manageable set of symbolic data. Symbolic data
preserve the essential information and can be processed by means of symbolic methods. Interval Analysis introduces inter-
vals as a fundamental means of representing real data, thus providing methods for numeric processing of these intervals.

In real-world scenarios, interval-valued data arise in several situations, such as recording monthly interval temperatures
at meteorological stations, daily interval stock prices, inaccuracy of the measurement instruments, and range of variation of a
variable through time [16].

The use of information granulation requires developing appropriate learning algorithms. Given this objective in mind, in
the paper we propose a neural architecture to process information granules consisting of interval-valued data. Our focus is
on an interval regression problem.

The first conceptualization of neural networks for processing granular data was introduced by Pedrycz and Vukovich [28].
Here, several design approaches are discussed, together with a number of architectures of granular neural networks and
associated training methods. Also, the authors tackle a number of fundamental issues of these networks, such as specificity
of information granules, learning complexity and generalization capabilities. Neural architectures based on interval arithme-
tic have been proposed in [7,10,11,22,24,26]. In particular, the model developed in [22] uses a standard multilayer percep-
tron (MLP) with numeric weights and biases, and a neuron transfer function able to operate with interval-valued inputs and
outputs. Here, the training process uses an error function based on a weighted Euclidean distance between intervals, and a
Quasi Newton method for the minimization of the error function. Other minimization methods such as genetic algorithms
(GA) and evolutionary strategies have been also discussed [10].

In its general architecture proposed in the literature, an MLP that processes interval-valued data is characterized by
weights and biases expressed in terms of intervals, and maps an interval-valued input vector to an interval-valued output.
However, very often, in the design of the training algorithms some simplifying assumptions are being made, e.g., it is as-
sumed that inputs, weights and biases may be real numbers, or the error function formed for the intervals is not compliant
with the rules of the interval arithmetic. As regards the error function, other strategies exploit a modified quadratic error
function, based on upper and lower bounds [10,14]. In [11] we proposed a new genetic algorithm-based learning method
for a general interval-valued neural architecture. In this study, we adopted a numeric-valued error function derived from
basic properties of interval arithmetic. However, due to the interval nature of the network output, the error of the model
should be viewed as an interval to quantify the precision of the model (in addition to the quantification of its accuracy
[4]). Indeed, to assess the extent to which a set of outputs of the model satisfy the requirements is not sufficient to know
the proximity of a representative output to a desired value. We should also know how much other outputs are close to
the representative. Such information is often important to guarantee an effective optimization, especially when the model
exhibits low resolution. Hence, a numeric-valued error represents a design constraint which strongly limits the capabilities
of the GA optimization.

Unlike the approaches proposed in the literature, in our MLP architecture, weights and biases are intervals, and each oper-
ation performed in the network is based on interval arithmetic. Furthermore, the parameters of the neural network are
learned by using a GA which optimizes an error function expressed in terms of intervals. The use of network errors expressed
as intervals requires defining an ordering relation between the chromosomes based on the interval arithmetic.

The resulting network allows forming mappings at different levels of granularity and therefore at different model reso-
lutions. Resolution concerns the smallest change in the data that produces a modification in the model. Since the level of
granularity is problem-oriented and user-dependent, it is a parameter of our neural architecture. We show the effectiveness
of the method by using various interval-valued datasets.

The paper is organized as follows. In Section 2, we introduce some basic notions of interval arithmetic. The architecture of
the interval neural network and the problem requirements are formally defined in Sections 3 and 4. Sections 5 and 6 describe
the design of the GA, especially its search space representation issues. A procedure for parameter setting and experimental
results are shown in Section 7. Finally, Section 8 draws some conclusions and discusses some future work.

2. Interval arithmetic: some definitions

We employ a generic implementation of information granules in terms of conventional interval-valued schemes. An
interval-valued variable €X is defined as:

€X ¼ x; �x½ � 2 IR; x; �x 2 R; ð1Þ

where IR is the set of all closed and bounded intervals in the real line, and x and �x are the boundaries of the intervals. An F-
dimensional granule (hyperbox [15]) is then represented by a vector of interval-valued variables as follows:

€X ¼ €X1; . . . ; €XF

h i
2 IRF ; €Xi 2 IR: ð2Þ

Alternatively, an interval variable can be described in terms of its midpoint _x and half-width x
_

, as follows [10]:

_X
_

¼ h _x; x
_
i 2 IR; _x; x

_
2 R; _x ¼ ðxþ �xÞ=2; x

_
¼ ð�x� xÞ=2: ð3Þ
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