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a b s t r a c t

In this paper, a finite dimensional guaranteed cost sampled-data fuzzy control (GCSDFC) prob-

lem is addressed for a class of nonlinear parabolic partial differential equation (PDE) systems.

Initially, applying the Galerkin’s method to the PDE system, a nonlinear ordinary differential

equation (ODE) system is derived. The resulting nonlinear ODE system can accurately describe

the dominant dynamics of the PDE system, which is subsequently expressed by the Takagi–

Sugeno (T–S) fuzzy model. Then, a guaranteed cost sampled-data fuzzy controller is developed

to stabilize exponentially the closed-loop slow fuzzy system while providing an upper bound

for the quadratic cost function. A novel time-dependent functional is constructed to derive the

condition for the existence of the proposed controller which is presented by bilinear matrix

inequalities (BMIs). Moreover, a suboptimal GCSDFC problem to minimize the cost bound can

be formulated as a BMI optimization problem. A local optimization algorithm that views the

BMI as a double linear matrix inequality (LMI) is given to solve this BMI optimization problem,

in which a Latin hypercube sampling (LHS) method is proposed to find an initially feasible so-

lution for starting the algorithm. Furthermore, it is shown that the proposed controller can

ensure the exponential stability of the closed-loop PDE system. Finally, simulation results on

the Fisher equation and the temperature profile of a catalytic rod show that the proposed

design strategy is effective.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since it can take the advantages of both linear system theory and fuzzy logic theory, the Takagi–Sugeno (T–S) fuzzy con-

trol approach has been widely used for the controller synthesis of various nonlinear systems over the past few decades (see,

e.g., [2–4,6,16,22,26,33,35,36]). However, the existing studies are mainly developed for nonlinear ordinary differential equation

(ODE) systems. In practice, the behavior of most industrial processes must depend on time and spatial position, such as fluid

flow, heat conduction, elastic wave, and chemical reactor processes. These spatially distributed processes can be described by

nonlinear partial differential equations (PDEs) with homogeneous or mixed boundary conditions. Since PDE systems are infinite

dimensional systems, the existing T–S fuzzy control approaches for nonlinear ODE systems may not be directly applicable to the

control design of nonlinear PDE systems. Until now, the modeling and control of nonlinear PDE systems remains an open and

challenging issue.
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As is well known, according to the properties of the spatial differential operator (SDO), PDE systems could be classified as

elliptical equation, hyperbolic equation, and parabolic equation, etc. The control of parabolic PDE systems has been studied ex-

tensively in the past two decades (e.g., [1,9–11,13–15,25,32]). The results of [1,9–11,13–15,25,32] have involved linear parabolic

PDE systems [13,14,32], quasi-linear parabolic PDE systems [1,10,15], and nonlinear parabolic PDE systems [9,11,25]. For parabolic

PDE systems, the eigenspectrum of the SDO can be separated into an infinite dimensional stable fast complement and a finite

dimensional slow one. Based on the application of the spatial discretization methods (predominantly Galerkin’s technique),

the proposed finite dimensional ODE systems can exactly describe the dominant dynamic behavior of parabolic PDE systems,

which is then used for the basis of the finite dimensional controller design. Recently, those mentioned above T–S fuzzy con-

trol technique has been successfully applied to the finite dimensional fuzzy controller synthesis of nonlinear parabolic PDE

systems in [5,7,37,39,40,44]. A finite dimensional constrained fuzzy control with guaranteed cost and a multiobjective opti-

mization based fuzzy control are introduced for a class of nonlinear distributed process systems in [37,40], respectively. In

[7,39], the fuzzy observer-based control problems for nonlinear parabolic PDE systems are studied. Nonlinear parabolic PDE

systems that involve stochastic process and time delay via fuzzy control are proposed in [5,44], respectively. However, it is worth

pointing out that the existing studies mainly concentrate on controlling continuous-time physical systems via continuous-time

controllers.

On the other hand, the digital controllers have many merits in speed, small size, accuracy, and low price, which are widely

used to control various continuous-time systems in the modern control process. When a continuous-time plant is controlled

by a digital control algorithm, the closed-loop system is known as a sampled-data system. Three main approaches have been

developed to control sampled-data systems which are described by ODEs: the discrete-time system approach [18,31,34], the

time-delay system approach [17,29], and the impulsive system approach [8,30]. Recently, these approaches have been extended

to the T–S fuzzy ODE systems with sampled-data control in the past few years ([20,23,24,41,43,45], and references therein). For

example, the time-delay system approach is introduced to sampled-data fuzzy control for nonlinear ODE systems in [20,24,43].

Then, an improved input delay approach to stabilization of fuzzy ODE systems under variable sampling is proposed based on a

novel Lyapunov–Krasovskii functional (LKF) in [45]. These results of [20,24,43,45] are further improved in [41] and successfully

applied to chaotic systems. More recently, the sampled-data fuzzy control design for T–S model-based fuzzy ODE systems using

the discrete-time system approach is put forward in [23]. It is noted that most of the existing results on sampled-data fuzzy

control focus on nonlinear ODE systems. As mentioned earlier, the behavior of most industrial processes is described by nonlinear

PDE systems that play an important role in engineering applications. However, the existing studies for PDE systems mainly

design a continuous-time controller to control the continuous-time plant. To fully enjoy the benefits of the digital technology

in control engineering, it is of importance to develop sampled-data control methods for PDE systems. Unfortunately, there are

very few results focusing on sampled-data control design for nonlinear parabolic PDE systems, which motivates the present

study.

In this study, a finite dimensional sampled-data fuzzy control approach will be developed for a class of nonlinear parabolic

PDE systems. Galerkin’s technique is initially applied to the PDE system to obtain a nonlinear slow system of finite dimensional

ODEs. Subsequently, the T–S fuzzy model is used to describe exactly the nonlinear slow system. Then, a guaranteed cost sampled-

data fuzzy controller design is proposed such that the closed-loop slow system is exponentially stable and an upper bound of

the quadratic cost function is provided. The condition for the existence of the proposed controller is derived based on a novel

time-dependent functional and presented by bilinear matrix inequalities (BMIs). Moreover, a suboptimal GCSDFC problem to

minimize the cost bound can be formulated as a BMI optimization problem. Based on the existing LMI optimization techniques

[12,19], a local optimization algorithm that views the BMI as a double LMI is also given to solve this BMI optimization problem,

where a Latin hypercube sampling (LHS) method is proposed to find an initially feasible solution for starting the algorithm. Fur-

thermore, it is proven that the proposed controller can ensure the exponential stability of the closed-loop PDE system. Finally, the

proposed design strategy is successfully employed to the control of the Fisher equation and the temperature profile of a catalytic

rod.

The main contribution and novelty of this paper are summarized as follows: (i) A novel time-dependent functional is con-

structed to finite dimensional guaranteed cost sampled-data fuzzy control design for a class of nonlinear parabolic PDE systems;

(ii) Based on the time-dependent functional technique, LHS method, and the LMI technique, a suboptimal GCSDFC problem is

formulated as a BMI optimization problem, which can be solved by a local optimization algorithm.

Notations: N is the set of nonnegative integers. R+, R denote the set of nonnegative real and real numbers, respectively.

Rn, Rn×m denote the n-dimensional Euclidean space and the set of all real n × m matrices, respectively. l2 denotes the subset

of R∞ consisting of all square summable infinite sequences of real numbers, such that l2 = {x = [x1 · · · x∞]T ∈ R∞|‖x‖l2 < ∞}
where ‖x‖l2 �

√∑∞
i x2

i
. For given constants α,β ∈ R, L2([α,β]; Rn) is a space of piecewise continuous, square-integrable vec-

tor functions defined on the interval [α, β]. L2([α,β]; Rn) � {ζ : [α,β] → Rn and ‖ζ‖2,[αβ] < ∞} with the norm ‖ζ‖2,[αβ] �√∫ β
α ζ

T(z)ζ (z)dz. ‖ · ‖ denotes the Euclidean norm for vector or the spectral norm of matrices. For a symmetric matrix M, M ≥
0 ( > 0, ≤ 0,< 0) means that it is positive-semidefinite (positive-definite, negative-semidefinite, negative-definite, respectively).

σ ( · ), σ̄ ( · ) denote the minimum singular value and the maximum singular value of a matrix, respectively. diag{ · } stands for a

diagonal block matrix. 0n and In denote the n × n zero matrix and n × n identity matrix, respectively. MT stands for the transpose

of the matrix M and a symmetric matrix by
[ A B

BT C

]
=

[A B
∗ C

]
.
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