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a b s t r a c t 

We develop a parallel primal-dual splitting method to solve large-scale image restoration 

problems, which involve the sum of several linear-operator-coupled nonsmooth but prox- 

imable terms. With the proposed method, the objective function is decomposed into pieces 

that can be processed individually. No inverse operator is involved in our method and the 

highly parallel structure makes it preferable in distributed computation. The convergence 

is proven and the convergence rate is analyzed. Besides, its equivalence to the relaxed par- 

allel linearized alternating direction method of multipliers (PLADMM) is addressed. Appli- 

cations to image restoration problems with compound l 1 -regularizer and comparisons with 

state-of-the-art methods are detailed to show the superiority of the proposed method. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

1.1. Problem formulation 

Image and video degradations frequently arise in acquisition and transmission. Some degradations, such as compressed 

sensing [4] , are intentional and beneficial, whereas, the others are annoying and troublesome. However, they all need to be 

undone for further image processing tasks. In general, the degradation process of an image can be modeled as 

f = Ku + n , (1) 

where u , f ∈ R 

mno are the original image and the observed image, respectively, which both possess an m × n × o domain 

( o -channel) that is expressed in vector form; K ∈ R 

mno × R 

mno is the ill-posed matrix operator that models the acquisition 

processing; and n ∈ R 

mno is a vector of some type of additive noise. Due to the ill-posed K , the estimation of u from f is an 

ill-posed linear inverse problem (IPLIP) and the solution of (1) is highly sensitive to the noise or the perturbation in f . 

Let D ( Ku , f ) be the data-fidelity term and J ( u ) be the regularizer, which often incorporates some sorts of prior knowledge 

of the original image, e.g., sparsity [14,26,27] , low-rank [29,31] , and smoothness [3] . Then most approaches to IPLIPs in 

imaging, such as deblurring [8,24] , super-resolution [38] , inpainting [17] , and segmentation [25,37] , result in the following 

regularized minimization functional form 

min 

u 
J ( u ) + λD ( Ku , f ) , (2) 

or its equivalent constrained form 

min 

u 
J ( u ) s.t. D ( Ku , f ) ≤ c, (3) 
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where λ is the regularization parameter that balances the data-fidelity and the regularizer; c is a noise-dependent con- 

stant upper bound. Due to an intractable data-fidelity constraint, most studies prefer (3) to (2) ; however, a person should 

manually attempt many iterations to select an approximate optimal λ. Objective (2) is more attractive if c can be rationally 

estimated based on the noise level, as λ can be adaptively estimated. Some properties, such as the nonsmoothness, often 

make the regularizer difficult to be jointly optimized with the data-fidelity part [11] . Besides, the combination of several reg- 

ularizers may encourage the solution to have more attractive properties; however, this leads to more complex optimization 

problems. 

In this paper, we consider the solution of a class of large-scale image restoration problems that involves a linear combi- 

nation of several regularizers. They usually lead to the following convex optimization objective 

min 

x ∈ X 
g ( x ) + 

H ∑ 

h =1 

f h ( L h x ) . (4) 

Denote the set of all convex, proper, and lower semicontinuous functions [2] from the Hilbert space X to R ∪ { + ∞ } as 

�0 { X }. In (4) , g ∈ �0 { X } and f h ∈ �0 { V h } are convex functions that are “simple” enough as their proximity operators (defined 

by (6) ) possess closed-form representations or can be efficiently solved. Every L h ( X → V h ) is a bounded linear operator 

with the adjoint L ∗
h 

and the induced norm ‖ L h ‖ = sup { ‖ L h x ‖ 2 : ‖ x ‖ 2 = 1 } < + ∞ . We assume that the set of minimizers of 

(4) is nonempty. Given a nonempty closed convex set � in X , its indicator function is defined as ι�( x ) ( ι�( x ) = 0 if x ∈ 

�, otherwise, ι�( x ) = + ∞ ). With ι�, the problem of minimizing g ∈ �0 { X } over � can be recast as min x ∈ X g ( x ) + ι�( x ) . 

Therefore, formulation (4) is sufficiently general for solving many inverse problems, such as (2) and (3) in a broad spectrum 

of areas. 

The set-valued subdifferential [2] of g is defined by 

∂g(x ) = { b ∈ X | ( ∀ x ′ ∈ X ) 〈 x ′ − x , b 〉 + g(x ) ≤ g( x ′ ) } . (5) 

The proximity operator of g is defined by 

prox g : X → X, x → arg min 

x ′ ∈ X 
g( x ′ ) + 

1 

2 

‖ x − x ′ ‖ 

2 
2 . (6) 

For an indicator function, its proximity operator is simply the projection operator onto the set in which it is defined [2] . The 

conjugate of g is defined by g ∗(x ) = sup x ′ ∈ X { 〈 x , x ′ 〉 − g( x ′ ) } . 
The major difficulty in solving (4) stems from two aspects. First, the data spaces X and V h in practical applications are 

typically of high dimension. Second, the function g and the linear operator coupled f h may be nondifferentiable, which often 

makes the operator splitting approach [2] the only viable way to solve (4) [11] . 

1.2. Related studies 

Many operator splitting methods have been proposed to solve the IPLIP, including the forward-backward splitting (FBS) 

method [2] , the Douglas-Rachford splitting (DRS) method [21] , the alternating direction method of multipliers (ADMM) [1] , 

the Bregman splitting (BS) method [16] , the linearized ADMM (LADMM) [31] , and the primal-dual splitting (PDS) method 

[5,9,10] . The DRS method, the ADMM, and the BS method are equivalent under linear constraints [32] . The PDS method can 

simultaneously find the solution of the primal problem and its dual counterpart. The convergence rate analysis [6,12,21] of 

these splitting methods and their generalization to parallel splitting [13,28] are important research cutting edges. The par- 

allel splitting method can solve more complicated problems such as (4) . 

Generally, splitting methods dealing with the IPLIP involve linear inverse operation. Condat [10,11] proposed a PDS 

method to solve the convex minimization problem with the form (4) . With the exclusion of the linear inverse operation 

that commonly exists in methods dealing with IPLIP, it solves the primal problem (4) and its dual problem jointly by find- 

ing a saddle point of the Lagrangian of (4) . However, all functional terms are treated equally in the PDS scheme of Condat, 

though different terms may represent different physical senses in real-world applications. This may weaken the capability 

(especially in speed) of the primal-dual scheme. 

1.3. Motivation and contributions 

In this paper, we generalize the idea of the PDS method [11] and propose a parallel primal-dual splitting (PPDS) method. 

We prove that the proposed method is equivalent to the parallel LADMM (PLADMM) with relaxation. The bridge between 

the PPDS method and the PLADMM is the Moreau decomposition [2] . Thus, the proposed method can also be seen as an 

extension of the PLADMM. The contribution of this paper is threefold: 

1. A parallel primal-dual splitting framework is proposed to cover both the PDS method and the PLADMM. By imposing 

different weights onto each linear operator and applying a relaxed step, fast convergence speed is achieved. At each 

iteration of the derived algorithm, only proximity operators and forward linear operators are involved; thus, the proposed 

method possesses a highly parallel structure and can be accelerated with a highly parallelized hardware. By excluding 

the linear inverse operator, the proposed method is not partial to a particular data boundary condition. 
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