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a b s t r a c t 

We study those problems where the goal is to find “optimal” models with respect to some 

specific criterion, in regression and supervised classification problems. Alternatives to the 

usual expected loss minimization criterion are proposed, and a general framework where 

this criterion can be seen as a particular instance of a general family of criteria is provided. 

In the new setting, each model is formally identified with a random variable that asso- 

ciates a loss value to each individual in the population. Based on this identification, dif- 

ferent stochastic orderings between random variables lead to different criteria to compare 

pairs of models. Our general setting encompasses the classical criterion based on the min- 

imization of the expected loss, but also other criteria where a numerical loss function is 

not available, and therefore the computation of its expectation does not make sense. 

The presentation of the new framework is divided into two stages. First, we consider the 

new framework under standard situations about the sample information, where both the 

collection of attributes and the response variables are observed with precision. Then, we 

assume that just incomplete information about them (expressed in terms of set-valued 

data sets) is provided. We cast some comparison criteria from the recent literature on 

learning methods from low-quality data as particular instances of our general approach. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

We deal with those machine learning problems where the goal is to find an optimal model f : X → Y relating some 

response variable Y : � → Y to a collection of attributes X : � → X , both of them defined on the same population �. These 

optimization problems usually aim at minimizing the expected loss, according to some loss function � : Y × Y → R that 

assigns a specific value to every pair ( Y ( ω), f ( X( ω) ), composed by the outcome of the response variable and its estimate 

based on the collection of attributes, for every individual ω ∈ �. Very typical examples of that are the square and the 

absolute value of the difference (�(y, ̂  y ) = (y − ˆ y ) 2 and �′ (y, ̂  y ) = | y − ˆ y | , respectively), both of them commonly used in 

regression problems, as well as the 0 − 1 -valued loss function �(y, ̂  y ) = 1 ˆ y � = y , frequently used in classification problems. But 

sometimes, a numerical valued loss function is impossible to assess. For instance, an expert can tell us that classifying a girl 

with severe dyslexia as non-dyslexic is worse than classifying her as having a moderate dyslexia, but he may be unable to 

provide us with specific loss values on a numerical scale. 
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On the other hand during the last years, there has been a growing interest in the development of learning models 

from set-valued datasets, extending existing learning algorithms to the case where our data points are not elements in the 

Cartesian product X × Y anymore, but (crisp or fuzzy) subsets of it (see [8,9,11,17,25,27] , among others). In order to do so, 

one should first distinguish between the “ontic” and the “epistemic” interpretations of set-valued data (see [4,12] ). Under the 

ontic approach (also called the “conjunctive” approach), sets are understood as complex entities observed with precision. As 

pointed out by Hüllermeier in [17] , this interpretation suggests learning models that produce sets as predictions, i.e., models 

that reproduce the observed data. Thus, methods based on this interpretation of (fuzzy) sets usually produce parametric 

models where the parameters are indeed subsets of the parametric space, instead of elements of it. On the contrary, under 

the epistemic approach (also called the “disjunctive” approach), sets are used to describe our (in) complete knowledge about 

the true outcomes of the vector of attributes and/or the response variable: we do not observe their exact values, but we just 

can provide sets that contain them with total certainty. In that case, we aim to find a crisp model that relates the (possibly 

ill-observed) response variable to the (also possibly ill-observed) random vector of attributes. Models are therefore usual 

functions of the form f : X → Y, but our information about their respective performances over a particular individual ω is 

incomplete, and it can be naturally expressed in terms of a subset of the form: 

{ �(y, f (x )) : (x ∈ X (ω) , y ∈ Y (ω) } , 
where X (ω) and Y (ω) denote the most precise sets that respectively contain X ( ω) and Y ( ω) with certainty, according to 

our incomplete information. Our information about the expected loss is therefore also incomplete, and a partial or a to- 

tal (pre)ordering over the class of subsets of the real line, extending the usual order, needs to be considered, in order to 

compare two different models. This technique gives birth to different extended methods, depending on the nature of the 

algorithms to be extended and the partial/total ordering selected [19–22,27,30,31] . 

From a practical point of view, “ontic” and “epistemic” interpretations are appropriate for different categories of prob- 

lems. In short, ontic interpretations are used when the set-valued data does not model imprecision and “epistemic” interpre- 

tations are related to vagueness. For instance, using the set {English, Spanish, French} for describing the languages spoken 

by a person is an ontic interpretation, but a set-valued medical differential diagnosis {hyperparathyroidism, cancer}, mean- 

ing that other diagnosis than hyperparathyroidism and cancer are discarded and a finer diagnostic is not yet possible, is an 

epistemic interpretation. The uncertainty in the data is propagated to the loss function, as mentioned: if a patient has can- 

cer and is diagnosed as {hyperparathyroidism, cancer}, this cannot be regarded as a successful classification, neither it is a 

failure. The methods mentioned in the preceding paragraph address this issue by means of a generalization of the expected 

error, i.e. the expected number of errors will be set-valued. Consequently, certain order must defined over these set-valued 

expected errors, and in case that this order is partial, the “best” model is in turn generalized to the set of minimal elements 

of this partial order. 

Notice also that this methodology is not too different than that used in the so-called “multi-criteria” modeling problems. 

For example, consider a regression problem with two output variables. In this kind of problems, one could aggregate the 

expected squared error of all variables into an scalar value and solve the problem with the same optimization algorithms 

used in the univariate case. Alternatively, one can assign a vector of losses to each model and define a “dominance” operator 

among these multi-valued losses. In this case, the “best” model is not sought but a set of nondominated elements, the so- 

called “Pareto front” [1] . 

This paper makes use of these techniques in a more general context, where a numerical loss function is not necessarily 

defined, and therefore an expected loss minimization does not necessarily make sense. In our framework, every model is 

identified with a random variable representing its reward (the opposite to its loss). According to this view, any stochastic 

ordering will lead to a specific pairwise comparison criterion between models. In particular, the expected loss minimization 

criterion is based on a well known stochastic ordering called “dominance in the sense of expected utility”. Here, we replace 

such a particular stochastic ordering criterion by a general family of criteria involving a wider family of stochastic order- 

ings, including it just as a particular case. Other stochastic orderings do not require the compared random elements to be 

numerical valued, and therefore non numeric loss functions can be considered in our general environment. 

A specific comparison criterion leads us either to an optimal model (if the criterion produces a total ordering between 

the different alternatives) or to a collection of non-dominated models (when the criterion produces a partial ordering). 

Different criteria may therefore produce different optimal solutions. The goal in the paper not to argue that any particular 

optimality criterion is better than another, but simply to present a general framework that facilitates future studies about 

different possible optimality criteria. 

2. Basics and notation 

Let � denote the population under study. Let X be the input space (the set of possible outcomes of the vector of at- 

tributes) and let Y denote the output space, i.e., the set of possible outcomes for the response variable. For instance, in a 

regression problem, the output space may coincide with the real line, while in a classification problem it will represent the 

collection of classes. X = (X 1 , . . . , X d ) : � → X will denote the random vector of attributes and Y : � → Y will stand for the 

response variable (in particular, in classification problems, Y ( ω) will represent the class of object ω.). 

We will consider a loss function � : Y × Y → R , penalizing wrong predictions. A model will incur a penalty �(y, ̂  y ) if 

the true output value is y and the model predicts ˆ y . Examples of loss functions commonly used in regression problems are 
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