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a b s t r a c t

In this paper, we study the problem of recovering a tensor with missing data. We propose a

new model combining the total variation regularization and low-rank matrix factorization. A

block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed opti-

mization model. We theoretically show that under some mild conditions, the algorithm con-

verges to the coordinatewise minimizers. Experimental results are reported to demonstrate

the effectiveness of the proposed model and the efficiency of the numerical scheme.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As a high-dimensional extension of matrix, tensor is an important big data format, which plays a significant role in a wide

range of real-world applications [19,31–36]. Among them, one important problem is to estimate the missing data from the

observed incomplete data, e.g., image inpainting [1,17], video inpainting [18], hyperspectral data recovery [22,23,41,45], magnetic

resonance imaging (MRI) data recovery [38], high-order web link analysis [16], personalized web search [31], and seismic data

reconstruction [19]. In this study, we specially focus on the reconstruction of low-rank tensors with randomly missing data.

Matrix completion can be regarded as the 2-mode tensor completion [4]. One powerful tool for matrix completion is to

minimize the matrix rank, which can effectively estimate the missing data exploiting both the local and global information [24].

The model for low-rank matrix completion is formulated as:

min
Y

rank(Y)

s.t. P�(Y) = F,
(1)

where Y ∈ R
m×n is the underlying matrix, F ∈ R

m×n is the observed matrix, and P�( · ) is the projection operator: see details in

Section 2. However, the main difficulty of solving (1) arises from the non-convexity of the rank of matrices, which may prevent

one from getting a global solution [40]. To solve the challenging problem of rank minimizing, Fazel et al. [8] and Kurucz et al. [20]

proposed to use rank constraint to iteratively estimate the missing values. Another popular and effective approach is to use the

trace norm, which is theoretical soundness and can be considered as the approximation for the rank of matrices [3,26,28]. And

∗ Corresponding author. Tel.: +86 28 61831608; fax: +86 28 61831280.

E-mail addresses: tengyu_j66@126.com (T.-Y. Ji), tingzhuhuang@126.com, tzhuang@uestc.edu.cn (T.-Z. Huang), xlzhao122003@163.com (X.-L. Zhao),

nkmth0307@126.com (T.-H. Ma), wd5577@163.com (G. Liu).

http://dx.doi.org/10.1016/j.ins.2015.07.049

0020-0255/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2015.07.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2015.07.049&domain=pdf
mailto:tengyu_j66@126.com
mailto:tingzhuhuang@126.com
mailto:tzhuang@uestc.edu.cn
mailto:xlzhao122003@163.com
mailto:nkmth0307@126.com
mailto:wd5577@163.com
http://dx.doi.org/10.1016/j.ins.2015.07.049


244 T.-Y. Ji et al. / Information Sciences 326 (2016) 243–257

under certain conditions [4,5], the problem (1) is converted to the following convex optimization problem:

min
Y

‖Y‖∗

s.t. P�(Y) = F.
(2)

Then the model (2) can be efficiently solved by using some optimization algorithms, such as FPCA [26], APGL [37], LMaFit [40],

and the alternating direction method (ADM) [30,43].

For tensor completion, the low-rank based methods have also been widely studied [9,24,25,42,44]. The low-rank tensor com-

pletion model can be formulated as:

min
Y

rank(Y)

s.t. P�(Y) = F,
(3)

where Y ∈ R
I1×···×IN is the underlyingtensor, and F is the observed data. However, there is no unique definition for the rank of

tensors, such as CP-rank and n-rank [15], and both of the corresponding minimization problems are NP-hard [12]. As the tensor

is a generalization of the matrix, one can generalize matrix completion problem (2) to the tensor case:

min
Y

‖Y‖∗

s.t. P�(Y) = F .
(4)

A naive method is to unfold the tensor into a matrix, and thus to solve the matrix completion (2). However, the method only

utilizes low-rankness to one mode of the tensor, and it cannot recover the tensor well [24,42]. Thus, it is necessary to develop

methods considering low-rankness to the all mode of the tensor. Recently, Liu et al. [24] developed a theoretical framework for

low-rank tensor completion and established a definition of the trace norm for tensors as a surrogate for the tensor rank:

‖Y‖∗ :=
N∑

n=1

αn‖Y(n)‖∗, (5)

where Y(n) is the mode-n unfolding of Y: see details in Section 2. Then low-rank tensor completion problem (4) is rewritten as:

min
Y

∑N
n=1 αi‖Y(n)‖∗

s.t. P�(Y) = F .
(6)

Problem (6) can be solved by some optimization methods, such as FaLRTC [24] and the Douglas–Rachford splitting method [9].

Because the information of the all mode is considered, these methods [9,24] outperform the naive method. However they have

to calculate singular value decomposition (SVD) for N matrices, which is expensive in term of time and memory. Considering this

difficulty, Xu et al. [42] applied low-rank matrix factorization to the all-mode matricizations of the tensor as an alternative of the

tensor trace norm,

min
Y,X,A

N∑
n=1

αn

2
‖Y(n) − AnXn‖2

F

s.t. P�(Y) = F,

(7)

where A = (A1, . . . , AN), X = (X1, . . . , XN), and αn, n = 1, . . . , N are positive weights satisfying
∑N

n=1 αn = 1. Their method (called

TMac) has shown to obtain better results and take less time than FaLRTC [24].

Note that Xu et al. [42] only consider the low-rank prior. However, many real-world data exhibit the piecewise smooth prior.

In particular, as one of characterizing piecewise smooth functions, the total variation (TV) norm [29] has been shown to preserve

edges well in image restoration [11,21,46]. Recently, other TV based regularization methods have received great success in im-

age processing problems, such as the image segmentation [7,39], the reconstruction for video [6], hyperspectral image [22,45]

and MRI [38]. Particularly, the authors in [22,45] considered to apply TV regularization to material identification and unmixing

for hyperspectral images, with the aim of exploiting the spatial contextual information presented in the hyperspectral images.

Inspired by the former works, we consider to introduce the TV regularization into the tensor completion problem (7).

The contributions of this paper are mainly two folds. First, we propose a new model for low-rank tensor completion with

randomly missing data. More precisely, our model is:

min
Y,X,A

N∑
n=1

αn

2
‖Y(n) − AnXn‖2

F + μTV(X3)

s.t. P�(Y) = F,

(8)

where μ is the regularization parameter, A = (A1, . . . , AN), X = (X1, . . . , XN), and TV(X3) is the total variation of X3. Similar to

[2,45], An represents a library (each column contains a signature of the nth mode direction), and Xn is called an encoding. For

example, in the unmixing problem for hyperspectral image [2,45], each column of A3 contains a spectral signature, and each row

of X3 contains the fractional abundances of a given endmember. This interpretation is also valid for the mode-3 unfolding of video
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