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a b s t r a c t

The study of parameter estimation of a specified model has a long history. In statistics,

Bayesian analysis via Markov chain Monte Carlo (MCMC) sampling is an efficient way for

parameter estimation. However, the existing MCMC sampling is only performed in the real

parameter space. In some situation, complex-valued parametric modeling is more preferable

as complex representation brings economies and insights that would not be achieved by real-

valued representation. Therefore, to estimate complex-valued parameters, it is more conve-

nient and elegant to perform the MCMC sampling in the complex parameter space. In this

paper, firstly, based on the assumption that the observation signal is proper, two complex

MCMC algorithms using the Metropolis–Hastings sampling and the differential evolution are

proposed, in which the probability density functions (pdfs) in Bayesian estimation are char-

acterized by the usual Hermitian covariance matrices. Secondly, to improve the performance

for the case that the observation signal is improper, two augmented complex MCMC algo-

rithms are developed, where the pdfs are computed by the augmented complex statistics.

Both theoretical studies and numerical simulations are presented to show the effectiveness of

the proposed algorithms in complex-valued parameter estimation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Parametric models provide powerful tools for fitting experimental observations. Consequently, the estimation of parameters

from noisy observations of a specified parametric model is significant. Currently, many approaches have been proposed [4,20,26].

In statistics, we usually treat the observations with disturbances and measurement errors as realizations, and then estimate the

parameters using statistical inference. Bayesian analysis is such a kind of method [4,12,26]. Given a certain amount of observa-

tions, Bayesian approach gives the posterior density of the parameter of interest by combining the data likelihood with a prior

distribution using the Bayes’ rule. By taking account of the uncertainties related to models and parameters, a more accurate esti-

mate may be achieved [12,24]. Besides, owing to the incorporation of the prior information of the parameters, Bayesian approach

can reduce the sensitivity to the finite data length.

Although Bayesian approach has the aforementioned attractive properties, it meets some difficulties in evaluating the pos-

terior densities, marginal of them, and the associated functions such as posterior means and covariance [24], as complicated

integrals over arbitrary probability distributions are required. These integrals are in general analytically intractable, which limit

the application of Bayesian approach to a wide range of complicated models.
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To tackle with this problem, many approaches have been proposed. The so-called ‘Markov chain Monte Carlo (MCMC)’ sam-

pling, a kind of simulation method, is effective in handling these intractable integrals [13,25,29,32]. It can facilitate the im-

plementation of Bayesian analysis of complex data sets containing missing observations and multidimensional outcomes. The

MCMC approaches numerically compute the required density by accessing to random sequences (Markov chains) as realizations

of the parameters, which converge to an invariant density that equals to the desired posterior density (target). Then, the desired

summaries of the posterior distribution can be computed from the sample sequences correspondingly.

On the other hand, a variety of practical systems, such as those in communication, electromagnetic, oceanography and optics,

are more preferable to be described by complex-valued parametric models [1,2,14,19,30]. Traditionally, to estimate the complex-

valued parameters, we usually formulate the complex-valued signals as bivariate and real-valued signals, and then perform the

MCMC sampling directly in real parameter space. This is natural as any linear complex-valued variable has a bivariate real-valued

equivalent, though not vice versa. But it is inexact. Complex-valued representation in many cases is more elegant than real-valued

representation. For example, it is more simple and efficient to present widely-linear or nonlinear transformations. Besides, it also

brings economies and insights into the underlying physics that would not be achieved by real-valued representation [1,2,30]. So,

it is more preferable to perform the MCMC sampling in complex space as to the complex-valued parameter estimation.

Considering this, in this paper, the estimation of complex-valued parameters from noisy observations of a complex-valued

parametric model is studied using the framework of Bayesian analysis via complex MCMC sampling. To resolve the computational

difficulties in Bayesian estimation, some complex MCMC methods using the Metropolis–Hastings (MH) sampling [15,22,23] and

the differential evolution (DE) [5,6,28,31] are individually proposed to generate a series of samples that yield an invariant distri-

bution of the desired posterior. After that, we can obtain the Bayesian point estimate using the posterior mean from the samples.

Based on the assumption that the observation signal is proper (a complex random variable is uncorrelated with its complex

conjugate), we directly extend the Bayesian estimation via MCMC in real parameter space to complex parameter space, in which

the probability density functions (pdfs) are characterized by the usual Hermitian covariance matrices. The convergence analysis

is then performed by resorting to its equivalent real-valued representation. In addition, considering that some practical system

output signals are complex improper (a complex random variable is dependent on its complex conjugate), some augmented com-

plex MCMC algorithms are further proposed, in which the pdfs in Bayesian estimation are computed by the augmented complex

statistics. Then, a series of simulations are performed to show the effectiveness of the proposed algorithms in complex-valued

parameter estimation.

The rest of the paper is organized as follows. In Section 2, some preliminaries of complex random variable or vector are intro-

duced. In Section 3, the Bayesian approach for complex-valued parameter estimation is formulated. In Section 4, two complex-

valued MCMC algorithms based on the MH sampling and the DE are proposed to implement the Bayesian estimation, and their

convergence analyses are given in the same section. In Section 5, some augmented complex MCMC algorithms are further devel-

oped to improve the performance when the observation signal is improper. In Section 6, some simulation examples are presented

to show the effectiveness of the proposed algorithms, and some conclusions are drawn in Section 7.

2. Preliminaries

To begin with, some preliminaries related to complex random variable or vector are introduced [1,30].

Consider a complex scalar, x = xr + jxi, where xr and xi are the real and the imaginary part of x respectively, and j = √−1 is

the imaginary unit. For a differentiable function f(x), the generalized complex derivative and the conjugate generalized complex

derivative are defined as [36]:
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Consider a D-dimensional complex random vector x = xr + jxi, where xr and xi are a pair of D-dimensional real random

vectors. We can construct two vectors closely related to x. The first one is the real composite random vector, θ = [xT
r , xT

i
]T ∈ R

2D,

which is obtained by stacking the real part xr into the imaginary part xi. The second one is the augmented complex random vector,

x =
[
xT, xH

]T ∈ C
2D∗ , which is obtained by stacking x on top of its complex conjugate x∗, where xH = (xT)∗ denotes the Hermitian

(conjugate) transpose.

The probability distribution (density) of a D-dimensional complex random vector (x) is interpreted as the 2D-dimensional

joint distribution (density) of its real part (xr) and imaginary part (xi). That is, if p(x) exists, we have

p(x) = p(xr + jxi) � p(xr, xi). (2)

Let p(x) be the pdf of a complex random vector x. According to (2), the expectation of x can be computed by

E[x] = E[xr] + jE[xi]

�
∫
R2D
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∫
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xi p(xr, xi)dxrdxi. (3)

For a complex random vector x = xr + jxi, its complex augmented covariance matrix is computed by

Rxx = E[(x − E[x])(x − E[x])H] =
[

Rxx R̃xx

R̃∗
xx R∗

xx

]
, (4)
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