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a b s t r a c t

In this paper we introduce three methods for re-scaling data sets aiming at improving the

likelihood of clustering validity indexes to return the true number of spherical Gaussian clus-

ters with additional noise features. Our method obtains feature re-scaling factors taking into

account the structure of a given data set and the intuitive idea that different features may have

different degrees of relevance at different clusters.

We experiment with the Silhouette (using squared Euclidean, Manhattan, and the pth

power of the Minkowski distance), Dunn’s, Calinski–Harabasz and Hartigan indexes on data

sets with spherical Gaussian clusters with and without noise features. We conclude that our

methods indeed increase the chances of estimating the true number of clusters in a data set.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Clustering is one of the most popular tasks in data analysis. It aims to reveal a class structure in a data set by partitioning it in

an unsupervised manner.

In this paper we address the fundamental issue of estimating the number of clusters K in a data set. This particular problem

has raised considerable research interest over the years, but it is not without controversies. It is a very active field of research

[1,7,22,29], but due to the lack of a generally accepted definition of what a “cluster” is there are no unified standards against

which it can be assessed.

A cluster is a homogeneous group of entities. While entities in the same cluster are supposed to be homogeneous, accord-

ing to some notion of similarity, entities in different clusters are expected to be heterogeneous. This is a rather loose definition

for the term cluster, which does not help much defining the true number of clusters for a given data set. In order to make the

problem more precise, in the present paper we are interested in finding clusters in the sense of K-Means but with additional

non-informative (“noise”) features, that is, clusters that are on the cluster-defining features approximately spherical and com-

pact, with similar within-cluster variation, and that can be approximated well by Gaussian distributions. This clustering problem

can be solved more precisely and in a more meaningful way if there is some degree of separation between clusters (i.e., distance

between the cluster’s high density areas), because otherwise, even if the number of clusters is correctly diagnosed, strong over-

lap between Gaussian distributions means that points cannot be reliably assigned to the Gaussian component that generated

them. We agree with [17] that different clustering methods are appropriate for different clustering aims, and that when carrying
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out a cluster analysis, researchers need to define more precisely what kind of clusters they are interested in. In line with this

thought, the above somewhat restrictive cluster definition can help researchers to decide whether the methods presented here

are suitable, instead of claiming that we could solve the general problem of clustering and estimating the numbers of clusters.

This defines what we mean by “true” clusters in the following, acknowledging that it does not yield a general definition of the

clustering problem, but rather a working definition for one of many possible ways to understand the term “cluster”, at which the

methods discussed here are aimed. The methods that we propose actually allow for more general than spherical cluster shapes

as long as feature re-scaling transforms the cluster shapes into (approximately) spherical ones.

Various clustering algorithms, some explained in Sections 2 and 3, are unable to determine the number of clusters in a given

data set, and in fact request this number to be specified beforehand. In scenarios in which this number is not known, a popular

solution is to run a given clustering algorithm using different values for the number of clusters and then analyse the generated

clusterings afterwards. The process of estimating how well a partition fits the structure underlying the data is often called “cluster

validation” [1,15]. After all feasible possibilities are analysed the number of clusters that generated the best partition, according

to a clustering validation index, is selected.

Note that it cannot be taken for granted that the problem of finding the true number of clusters coincides with finding the

clustering solution that produces the best clustering in terms of the misclassification rate or the adjusted Rand index [20]. For

example, it may be that if there are two true clusters, the clustering method splits the data set up incorrectly if indeed K = 2 is

used as the number of clusters, whereas for K = 3 one cluster coincides perfectly with one true cluster and the other true cluster

is split into two found clusters, which for many applications and in terms of the adjusted Rand index may be seen as the better

solution. In this paper we aim to address both views, finding the true K, and finding the best clustering.

The quantity of noise features in a data set is an important concern. It is not uncommon to have data sets containing entities

characterised by features, with some of the latter being irrelevant to the problem at hand. Generally speaking, noise features,

together with the degree of overlap between clusters, are the factors with the greatest impact on clustering validation indexes

performance [1,7], with a small inclusion of 10% noise features having already a considerable impact on such indexes [1].

In our experiments we simulate irrelevant features by adding features generated from uniform random values to our data

sets. Difficulties in the estimation of the number of clusters raised by the presence of noise features in a data set have been

considered before [12], however, there is still a view that the issue raised by noise features deserves more consideration [7].

The main contribution of this paper is to present three methods to re-scale data sets in such a way that cluster validity indexes

become more likely to return the true number of clusters. Our experiments focus on versions of the most popular partitioning

algorithm, K-Means, and the comparison of the performances of each index before and after re-scaling.

Section 2 reviews K-Means and a number of validation indexes. The methodological core of the paper is Section 3, in which

we introduce a version of K-Means incorporating feature weighting and more general Minkowski metrics [11]. Different versions

of feature re-scaling with and without re-clustering at the end are proposed for use with the validation indexes. In Section 4 we

present our simulation study and discuss its results, followed by a conclusion.

2. Background and related work

2.1. K-Means

K-Means [2,24] is arguably the most popular partitioning clustering algorithm [21,29]. Given a data set Y of V-dimensional

entities yi ∈ Y, for i = 1, 2, . . . , N, K-Means generates K non-empty disjoint clusters S = {S1, S2, . . . , SK} around the centroids

C = {c1, c2, . . . , cK}, by iteratively minimising the sum

WK = W(S,C) =
K∑

k=1

∑
i∈Sk

d(yi, ck) (1)

of the within-cluster distance between entities and centroids. Each centroid ck uniquely represents a cluster Sk and is sometimes

called its prototype. The K-Means criterion above returns an index representing how good a clustering is, the lower the better.

d(yi, ck) in (1) represents the distance between entity yi and the centroid ck. In the original K-Means, this distance measure is the

squared Euclidean distance given by d(yi, ck) = ∑
v∈V (yiv − ckv)

2, minimising the square error criterion. Other distance measures

are possible, such as the Manhattan distance given by d(yi, ck) = ∑
v∈V |yiv − ckv|, although only with the squared Euclidean

distance the cluster centroids minimising W are actually the within-cluster means. In the present paper, we will not only consider

the Euclidean distance, but also the Manhattan distance and the pth power of the Minkowski distance dp(yi, ck) = ∑
v |yiv − ckv|p

for various values of p, because with a suitable choice of p this has been found to work well with noise features, see [11] and

Section 3.

The pth power of the Minkowski distance is chosen here by analogy to the use of the squared Euclidean distance, rather than

the Euclidean distance itself, in the original K-Means.

The minimisation of (1) has three simple steps, iterated until convergence.

1. Select the values of K entities yi ∈ Y as initial centroids c1, c2, . . . , cK . The initial entities may be chosen at random, but better

strategies are available, see Section 2.6. Set S = {∅}.

2. Assign each entity yi ∈ Y to the cluster Sk represented by ck, the closest centroid to yi.
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