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a b s t r a c t

Given a first set of observations from a design of experiments sampled randomly in the design

space, the corresponding set of non-dominated points usually does not give a good approx-

imation of the Pareto front. We propose here to study this problem from the point of view

of multivariate analysis, introducing a probabilistic framework with the use of copulas. This

approach enables the expression of level lines in the objective space, giving an estimation of

the position of the Pareto front when the level tends to zero. In particular, when it is possible

to use Archimedean copulas, analytical expressions for Pareto front estimators are available.

Several case studies illustrate the interest of the approach, which can be used at the beginning

of the optimization when sampling randomly in the design space.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multi-objective optimization (MOO) received a lot of attention recently, including in particular developments on scalariza-

tion [22], hybrid approaches [25], evolutionary optimization (see e.g. [7,10,52]) or surrogate-based optimization [48]. Since no

solution usually minimizes every objective at once, the definition of a solution for a multi-objective optimization problem is

generally defined as a compromise: a solution is said to be optimal in the Pareto sense if there exists no other solution which is

better for every component. All the optimal points in the objective space form the Pareto front. As a result, optimizers provide a

set of non-dominated points to approximate the Pareto front. Methods are then designed to seek some properties for these sets,

such as uniformity and coverage.

Usually an optimization process starts with random sampling, either to generate an initial population or as a basis to con-

struct a metamodel. The current Pareto front estimated from this first sample may be highly variable, especially when only a

small number of function evaluations are available, corresponding to time-consuming functions. This is illustrated in Fig. 1 for

the bi-objective problem ZDT1 [53], with five 50-points initial samples. However, the stochastic nature of sampling provides a

probabilistic framework that can be exploited to quantify this variability and to give a better initial localization of the Pareto

front. More precisely, if X = (X1, . . . , Xd) is a d-dimensional random vector representing the inputs, and f1, . . . , fm the objective

functions, then the Pareto front should be connected to the extreme level lines of the distribution of Y = ( f1(X), . . . , fm(X)). To

investigate such connection is the aim of the paper.
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Fig. 1. Non-dominated points obtained with 5 different random samples (one color and type of line per sample) of 50 points for the bi-objective problem ZDT1.

The true Pareto front is the black solid line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article).

In the mono-objective situation, a similar probabilistic connection is studied by [46] to estimate the value of the extremum.

Considering a small sample of n observations (y1, . . . , yn) of Y, the minimum of Y is approximated using concepts from extreme

order statistics. In multi-objective optimization, the connection seems to be new. Uncertainty quantification around the Pareto

front has been recently considered by [4], using conditional simulations of Kriging metamodels and concepts from random sets

theory. Whereas such approach is relevant in a sequential algorithm, it may be inappropriate in the initial stage that we consider

here, due to a potentially large model error in metamodeling.

In this paper, we give a theoretical framework in which the Pareto front appears as a zero level line of the multivariate distri-

bution FY of Y. This problem is known in the probabilistic literature as support curve estimation (see e.g. [23,26,28]). However,

the existing methods rely on assumptions, such as domain of attraction or polynomial rate of decrease, which can hardly be

checked in an optimization context. As an alternative, we propose to take advantage of copulas [41] which are multivariate prob-

ability distributions with uniform marginals, allowing to consider separately the estimation of the marginals and the dependence

structure. This allows estimating extreme level lines, without making specific assumptions about domain of attractions. Copulas

have already been used in optimization, mainly in the variable space to estimate distribution in evolutionary algorithms, see e.g.

[18,19,49], while here we focus on the objective space. We propose a first estimation of the Pareto front relying on the empirical

copula. Then, we consider the case where the copula belongs to the class of Archimedean copulas, parameterized by a function.

This assumption can be checked visually or statistically with specific tests of the literature. If relevant, a better localization of the

Pareto front is found. Furthermore, a parametric expression of the approximated Pareto front is available.

The paper is structured as follows. Section 2 proposes alternative definitions of the Pareto front from the point of view of

the cumulative distribution function, presents some background about copulas and describes the estimation procedure in the

Archimedean case. Section 3 discusses the applicability of the model and more specifically the consequences of the Archimedean

copula model. Section 4 illustrates in several configurations the application of the proposed approach to Pareto front localization.

Section 5 concludes and describes possibilities for further improvements.

2. Methodology

The present section describes the interest of using a probabilistic framework in multi-objective optimization by establishing

the link between both domains. Based on the resulting theorem, the expression of level lines of the multivariate cumulative

distribution functions FY using copulas is described as well as a procedure for their estimation. Empirical and parametric models

are discussed, with emphasis on Archimedean models.

2.1. Link between Pareto front and level curves

For a variety of methods ranging from evolutionary optimization [10] to surrogate-based methods [45], optimization starts

with random sampling in the design space, with uniform sampling or with a random Latin Hypercube. In this case, it is possible to

study the resulting observations in the objective space as a set of points. Specifically, assuming that the outputs can be considered

as independent and identically distributed (i.i.d.) random variables, they enter the scope of multivariate analysis.

Let us start with definitions of Pareto dominance and Pareto front, in a minimization context. For two points y = (y1, . . . , ym)
and z = (z1, . . . , zm) of Rm, m ≥ 2, we first define the respective weak, strict and strong dominance operators �, � and ≺ as:{

z � y ⇔ ∀i = 1, . . . , m, zi ≤ yi ,

z � y ⇔ ∀i = 1, . . . , m, zi ≤ yi and ∃i ∈ {1, . . . , k}, zi < yi ,

z ≺ y ⇔ ∀i = 1, . . . , m, zi < yi .

The expression weak dominance is used here as in [54, Section 14.2], or [36], strict dominance as in [8], Definition 2.1, and

strong dominance as in [9, Section 2.4.5]. Strict dominance is usually referred simply as dominance or Pareto dominance. Notice

that the terminology or symbols employed differ among authors.
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