
Visualizing network communities with a semi-definite
programming method

Wenye Li ⇑
School of Public Administration, Macao Polytechnic Institute, Rua de Luís Gonzaga Gomes, Macao

a r t i c l e i n f o

Article history:
Received 12 April 2014
Received in revised form 27 March 2015
Accepted 23 May 2015
Available online 29 May 2015

Keywords:
Graph layout
Network modularity
Semi-definite programming

a b s t r a c t

The existence of community structures is commonly believed in complex networked sys-
tems and has gained significant research attention in recent years. The automatic detection
of network communities poses a non-trivial challenge due to the inherent computational
requirements. In this paper, we investigate the problem from a different perspective and
propose a novel model to visualize networks with the objective of exposing their commu-
nity structures based on the idea of modularity maximization. The model is relaxed by a
simple convex positive semi-definite program, which can be optimized efficiently.
Compared with other visualization approaches, through empirical evaluation our method
is able to highlight network communities and the adversary vertices therein effectively.
Thereby, it provides a useful tool in the family of community detection algorithms and
in the family of graph layout methods.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many complex systems of scientific and engineering interest can be formulated as networks. Networks provide an effec-
tive way of expressing entities and their interactions through vertices and edges. Prominent examples of networked systems
include the World Wide Web, social networks, biological networks and communication networks. With rapidly increasing
needs from the real world, complex network analysis has gained significant research attention recently, in diverse areas such
as computing sciences and information technologies [9,28,26].

Challenges are raised by network analysis, among which a significant one is to detect the community structures therein.
Communities are commonly believed to exist in real networks. Vertices tend to fall in groups where connections within the
same group are dense, whereas connections are sparse between vertices from different groups. The ability to find and
analyze such groups has proved useful in understanding the formation and dynamics of networks and is invaluable with
wide applications [9,28,15,31].

To divide vertices into groups, an influential measure, called modularity, is often used to quantify the quality of a given
partition. Extensive study has shown that larger modularity scores are correlated with better vertex partitions [12]. Thus
maximizing the modularity score provides a principled way to identify network communities [24,23,8,34,42,38,14,5]. At
the same time, the mathematical optimization of the measure is challenging in both theory and practice; it involves
expensive computation and becomes prohibitive for medium to large-sized networks [3].
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On the other hand, even if an automatically generated partition is available, human experts’ effort is still inevitable in
verifying the result. Bearing this in mind, our work starts from a different perspective. Instead of completely automating
the process of community detection, we wish to visualize networks with the objective of highlighting the underlying com-
munity structures in a low-dimensional space. That is, compared to previous community detection approaches, our work
provides a semi-automatic method. With the visualization, human experts can easily inspect the communities and make
decisions of their own.

Our visualization method is based on the idea of modularity maximization. Computationally it can be relaxed as a simple
positive semi-definite program, which provides an efficient and effective convex solution. Through empirical investigation,
we observed key differences between our own and previous visualization approaches, and justified the usefulness of the pro-
posed method.

The paper is organized as follows. We first introduce the background and related work briefly. Then, we present the pro-
posed model and its computational relaxation in detail. The empirical evaluation results are given next, followed by conclu-
sions and a discussion.

2. Background and related work

2.1. Network partition and modularity optimization

Network partition refers to a specific form of clustering that divides the vertices of a given network into groups according
to the pattern of its edges. We commonly divide the vertices so that the groups formed are tightly knit with many edges
inside groups.

Among network partition methods, the technique of ‘‘modularity maximization’’ is routinely used in practice [12,28]. It is
performed by quantifying the quality of a given division of a network into communities by a measure of ‘‘modularity’’. Good
divisions, which have high modularity values, are those with dense edge connections between the vertices within a commu-
nity but sparse connections between vertices in different communities.

For simplicity, let us restrict the discussion to an undirected network G ¼ V ;Wð Þwhere V ¼ v1;v2; . . . ; vnf g is a set of ver-
tices and W ¼ wij

� �n
i;j¼1 is an adjacency matrix with each wij giving the number of edges between two vertices v i and v j (or,

edge weight). We further use mi ¼
P

jwij as the degree of v i and m ¼ 1
2

P
imi as the total edge number.

For a candidate partition of all vertices into nc groups, its modularity is defined to be the portion of the edge connections
within the same group minus the expected portion if the connections were distributed randomly. Under a random graph
model with given expected degrees for the vertices, the expected number of edges between two vertices v i and v j is mimj

2m

[7]. Thus the observed number minus the expected number is wij �
mimj

2m . Summing over all pairs of vertices within the same
group, the modularity, denoted by Q, is given by

Q ¼ 1
2m

X
ij

wij �
mimj

2m

h i
d ci; cj
� �

ð1Þ

where ci is an integer within 1; . . . ;nc indicating the group of vertex v i, and d is the Kronecker delta function.
The value of Q is strictly less than 1. It is positive if there are more edges between vertices within the same group than one

would expect by chance. It is negative otherwise. Given a larger than expected portion of connections, we infer the presence
of an inherent community structure. Therefore, looking for divisions with high modularity values provides a precise way to
detect network communities [28].

Unfortunately seeking a partition that has the highest modularity score is usually difficult. It can be proved to be com-
putationally NP-hard [3], and the complexity needed by the optimal solution grows exponentially with the problem size.
Thus approximated solutions have to be sought if tractability is to be ensured [12,17,28]. The quality and efficiency of such
approximations have posed a significant challenge in practice.

2.2. Positive semi-definite programming

Semi-definite programming (SDP) is a relatively new subfield of convex optimization, and dramatic development has
been made in its theory and practice since the 1990s [27,37].

SDP is concerned with optimization problems over symmetric positive semi-definite matrix variables with a linear objec-
tive function and linear constraints. Denote by Sn the space of all n� n real symmetric matrices, equipped with an inner pro-

duct S1; S2h i ¼ tr ST
1S2

� �
where S1; S2 2 Sn and tr denotes the trace of a square matrix. A matrix S 2 Sn is positive semi-definite

if all its eigenvalues are nonnegative; we write S � 0. Given A;A1; . . . ;Amf g � Sn and scalars a1; . . . ; am, SDP maximizes a linear
objective of the type

max
S

tr AT S
� �

ð2Þ

subject to
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