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a b s t r a c t

This paper is devoted to the investigation of H1 sliding mode control (SMC) for uncertain
neutral stochastic systems with Markovian jumping parameters and time-varying delays. A
sliding surface functional is firstly constructed. Then, the sliding mode control law is
designed to guarantee the reachability of the sliding surface in a finite-time interval. The
sufficient conditions for asymptotically stochastic stability of sliding mode dynamics with
a given disturbance attenuation level are presented in terms of linear matrix inequalities
(LMIs). Finally, an example is provided to illustrate the efficiency of the proposed method.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Stability and control of time-delay systems are of great significance, because time delays occur in various practical sys-
tems and are often a source of instability and poor performance [1–3]. Neutral-type systems or neutral systems, as a kind of
time-delay systems described by neutral functional differential equations [4,5], are frequently encountered due to the finite
capabilities of information processing and data transmission among various parts of the systems, such as HIV infection with
drug therapy, space navigation systems, aircraft stabilization, chemical engineering systems, inferred grinding model,
manual control, neural network, nuclear reactor, population dynamic model, rolling mill, ship stabilization, and systems with
lossless transmission lines. Hence, stability analysis and stabilization of neutral-type dynamical systems have attracted con-
siderable attention, see [4–8] and the references therein.

In practice, systems are almost always innately ‘‘noisy’’ [9]. Neutral-type stochastic systems have received great interests
[10–13]. Moreover, as a class of special stochastic systems, Markovian jump systems, introduced by Krasovskii and Lidskii
[14] in 1961, have been widely studied because of their wide applications in many fields, see [15–37] and the references
therein. Zhang et al. [16–19] have discussed Markovian Jump Linear systems with partly unknown transition probability.
Li and Kao [27] have investigated stability of stochastic reaction–diffusion systems with Markovian switching and impulsive
perturbations. Mao et al. [30–36] have established a number of stability criteria for stochastic differential equations with
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Markovian switching. However, there are few robust stability criteria of the uncertain neutral-type stochastic systems with
Markovian jumping parameters.

In practice, the mathematical model always contains some uncertain elements, and uncertain systems have been exten-
sively studied in the past decades [7,13,15,22–24,29]. Kao et al. [15] have considered delay-dependent robust exponential
stability of Markovian jumping reaction–diffusion Cohen–Grossberg neural networks with mixed delays. Niu et al. [22] have
studied robust integral sliding mode control for uncertain stochastic systems with time-varying delay. Zhou and Fang [24]
have investigated delay-dependent robust H1 admissibility and stabilization for uncertain singular system with Markovian
jumping parameters. Shi and Boukas [29] have probed H1 control for Markovian jumping linear systems with parametric
uncertainty.

As is well known, since the 1970s, variable structure control has attracted significant research attention in the control
community. Sliding mode control (SMC) is a particular type of variable structure control. It provides an effective alternative
to deal with the nonlinear dynamic systems. The main feature of SMC is claimed to result in superb system performance
which includes fast response, easy realization, insensitivity to variation in plant parameters and complete rejection of exter-
nal perturbations, please see [38–50] and the references therein. Xia et al. [40,41] have considered robust sliding-mode con-
trol for uncertain time-delay systems by an LMI approach. Huang et al. [42] have probed sliding mode H1 control design for
uncertain nonlinear stochastic state-delayed Markovian jump systems with actuator failures. However, as far as the stability
problem of uncertain stochastic neutral delay systems is concerned, it seems that few results are available on the variable
structure control. Besides, H1 control concept was proposed to reduce the effect of the disturbance input on the measured
output to within a prescribed level [17,24–26,42,47,51–56,61–65], to the best of the authors knowledge, the H1 sliding
mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters has not been properly
addressed, which still remains important and challenging.

Motivated by the above discussions, in this paper, we focus on the design of H1 sliding mode control for uncertain neu-
tral-type stochastic systems with Markovian jumping parameters. In Section 2, some preliminaries are presented. In
Section 3, a switching surface, which makes it easy to guarantee the stability of the uncertain stochastic neutral delay sys-
tems in the sliding mode, is proposed. By means of linear matrix inequalities (LMIs), a sufficient condition is given such that
the stochastic dynamics in the specified switching surface is globally stochastically stable. And then, based on this switching
surface, a synthesized SMC law is derived to guarantee the existence of the composite sliding motion. An example is pro-
vided in Section 4 to demonstrate the validity of the proposed SMC. Section 5 is conclusion.

Notations: ðN;F; fFtgtP0;PÞ is a complete probability space with a filtration fFtgtP0 satisfying the usual conditions. LP
F0

is the family of all F0-measurable Cð½�s;0�; RnÞ valued random variables n ¼ nðhÞ : �s 6 h � 0 such that

sup�s6h�0EknðhÞk
2
2 <1, where Ef�g stands for the mathematical expectation operator with respect to the given probability

measure P. Rn and Rn�m denote, respectively, the n-dimensional Euclidean space and the set of n�m real matrices. The
superscript T denotes the transpose and the notation X; Y (respectively X > Y) where X and Y are symmetric matrices, means
that X � Y is positive semi-definite(respectively, positive definite). L2 stands for the space of square integral vector functions.
k � k will refer to the Euclidean vector norm, � represents the symmetric form of matrix.

2. System description and definitions

Consider the following neutral stochastic system with multiple delays, uncertainties and Markovian switching:

d½EðrðtÞÞxðtÞ � CðrðtÞÞxðt � sÞ� ¼ f½AðrðtÞÞ þ DAðrðtÞ; tÞ�xðtÞ
þ½AdðrðtÞÞ þ DAdðrðtÞ; tÞ�xðt � hÞ þ GðrðtÞÞvðtÞ þ BðrðtÞÞuðtÞgdt

þf½~EðrðtÞÞ þ DEðrðtÞ; tÞxðtÞ� þ ½~EdðrðtÞÞ þ DEdðrðtÞ; tÞxðt � hÞ�gdxðtÞ;
yðtÞ ¼ �CðrðtÞÞxðtÞ;
xðtÞ ¼ /ðtÞ; t 2 ½�H;0�;

8>>>>>><>>>>>>:
ð1Þ

where xðtÞ 2 Rn is the state vector; uðtÞ 2 Rm is the control input; yðtÞ is the controlled output; vðtÞ is the exogenous noise; s
and h are the constant delays; xðtÞ is the one-dimensional Brownian motion satisfying EfdxðtÞg ¼ 0 and Efdx2ðtÞg ¼ dt.
/ðtÞ 2 LP

F0
ð½�H;0�; RnÞ is a compatible vector valued continuous function, H ¼maxfs;hMg. EðrðtÞÞ; CðrðtÞÞ; AðrðtÞÞ;

AdðrðtÞÞ; ~EðrðtÞÞ; ~EdðrðtÞÞ and BðrðtÞÞ are real constant matrices with appropriate dimensions. DAðrðtÞ; tÞ; DAdðrðtÞ; tÞ;
DEðrðtÞ; tÞ and DEdðrðtÞ; tÞ represent the uncertainties, which are assumed to be of the forms

DAðrðtÞ; tÞ ¼ MðrðtÞÞF1ðtÞNAðrðtÞÞ;DAdðrðtÞ; tÞ ¼ MðrðtÞÞF2ðtÞNAdðrðtÞÞ;

½DEðrðtÞ; tÞ;DEdðrðtÞ; tÞ� ¼ MðrðtÞÞF3ðtÞ½NEðrðtÞÞ;NEdðrðtÞÞ�;
ð2Þ

where MðrðtÞÞ; NAðrðtÞÞ; NAd
ðrðtÞÞ; NEðrðtÞÞ and NEd

ðrðtÞÞ are given constant matrices, and unknown real time-varying matri-

ces FlðtÞ 2 Rðr1þ���þrkþf 1þ���þf sÞ�ðr1þ���þrkþf 1þ���þf sÞðl ¼ 1;2;3Þ have the following structure:
FlðtÞ ¼ blockdiagfdl1 ðtÞIlr1 ; . . . ; dlk ðtÞIlrk

; Ff 1
ðtÞ; . . . ; Ff s

ðtÞg; dli 2 R; kdlik 6 1; 1 6 i 6 k, and FT
f j

Ff j
6 I; 1 6 j 6 s. We define

the sets Dl as
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