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a b s t r a c t

In this paper we analyze and exactly compute the number of affine equivalence classes
under permutations for quartic monomial rotation symmetric functions in prime and
prime power dimensions.
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1. Introduction

An n-variable Boolean function f is a map from the n dimensional vector space Fn
2 ¼ f0;1g

n into the two-element field F2,
that is, an n-variable Boolean function f is a multivariate polynomial over F2. Denoting the addition operator over F2 by ‘+’, a
Boolean function can be thought as a multivariate polynomial, called the algebraic normal form (ANF)

f ðx1; . . . ; xnÞ ¼ a0 þ
X

16i6n

aixi þ
X

16i<j6n

aijxixj þ . . .þ a12...nx1x2 . . . xn;

where the coefficients a0; aij; . . . ; a12...n 2 F2. The maximum number of variables in a monomial is called the (algebraic)
degree, and it is denoted by degðf Þ. If all monomials in its ANF have the same degree, the Boolean function is said to
be homogeneous.

Functions of degree at most one are called affine functions. An affine function with constant term equal to zero is called a
linear function. Define the scalar product of x ¼ ðx1; . . . ; xnÞ; y ¼ ðy1; . . . ; ynÞ both in Fn

2, by x � y ¼
Pn

i¼1xiyi. The (Hamming)
weight, denoted by wtðxÞ, of a binary string x is the number of ones in x, and the Hamming distance dðx; yÞ between x and
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y is the number of positions where x; y differ. An n-variable function f is said to be balanced if its output column in the truth
table contains equal number of 0s and 1s (i.e., wtðf Þ ¼ 2n�1). The nonlinearity of an n-variable function f is the minimum dis-

tance to the entire set of affine functions, which is known to be bounded from above by 2n�1 � 2n=2�1.
We define the (right) rotation operator qn on a vector ðx1; x2; . . . ; xnÞ 2 Fn

2 by qnðx1; x2; . . . ; xnÞ ¼ ðxn; x1; x2; . . . ; xn�1Þ. Hence,
qk

n acts as a k-cyclic rotation on an n-bit vector. A Boolean function f is called rotation symmetric [10] if for each input
ðx1; . . . ; xnÞ in Fn

2, f ðqk
nðx1; . . . ; xnÞÞ ¼ f ðx1; . . . ; xnÞ; for 1 6 k 6 n. That is, the rotation symmetric Boolean functions (RSBF)

are invariant under cyclic rotation of inputs. A partition of some cardinality gn is generated by
Gnðx1; . . . ; xnÞ ¼ fqk

nðx1; . . . ; xnÞj1 6 k 6 ng, and so, the number of n-variable RSBFs is 2gn . It was shown [11] that

gn ¼ 1
n

P
kjn/ðkÞ2

n
k , where / is Euler’s totient function. We refer to [8,9,11] for the formula on how to calculate the number

of partitions with weight w, say gn;w, for arbitrary n and w.
A rotation symmetric function f ðx1; . . . ; xnÞ can be written as

a0 þ a1x1 þ
X

a1jx1xj þ . . .þ a12...nx1x2 . . . xn;

where a0; a1; a1j; . . . ; a12...n 2 F2, and the existence of a representative term x1xi2 . . . xil implies the existence of all the terms
from Gnðx1xi2 . . . xil Þ in the ANF. This representation of f (not unique, since one can choose any representative in
Gnðx1xi2 . . . xil Þ) is called the short algebraic normal form (SANF) of f. If the SANF of f contains only one term, we call such a
function a monomial rotation symmetric (MRS) function. Certainly, the number of terms in the ANF of a monomial rotation
symmetric function is a divisor of n (see [11]).

We say that two Boolean functions f ðxÞ and gðxÞ in Bn are affine equivalent if gðxÞ ¼ f ðxAþ bÞ, where A 2 GLnðF2Þ (n� n
nonsingular matrices over the finite field F2 with the usual operations) and b is an n-vector over F2. We say f ðxAþ bÞ is a
nonsingular affine transformation of f ðxÞ. It is easy to see that if f and g are affine equivalent, then they have the same weight
and nonlinearity: wtðf Þ ¼ wtðgÞ and Nf ¼ Ng (these are examples of affine invariants).

There are cases, when it is known that these invariants are also sufficient (two quadratic functions are affine equivalent if
and only if their weights and nonlinearity are the same – see [3], for example). However, in general, for higher degrees, that it
is not the case, but there are attempts to solve the equivalence problem (see [1] and the references therein).

2. Background on S-equivalence

In [2] the authors introduced the notion of S-equivalence f �S g, which is the affine equivalence of monomial rotation sym-
metric (MRS) functions f ; g under permutation of variables (we will write here f � g, for easy displaying).

An n� n matrix C is circulant, denoted by Cðc1; c2; . . . ; cnÞ, if all its rows are successive circular rotations of the first row,
that is,

C ¼

c1 c2 . . . cn

cn c1 . . . cn�1

. . . . . . . . . . . .

c2 c3 . . . c1

0
BBB@

1
CCCA:

On the set Cn of circulant matrices an equivalence relation was introduced in [2]: for A1 ¼ Cða1; . . . ; anÞ;A2 ¼ Cðb1; . . . ; bnÞ,
then A1 � A2 if and only if ða1; . . . ; anÞ ¼ qk

nðb1; . . . ; bnÞ, for some 0 6 k 6 n� 1. It was shown that the set of equivalence
classes (the equivalence class of Cða1; a2; . . . ; anÞ is denoted by Cha1; a2; . . . ; ani, or hCða1; a2; . . . ; anÞi) form a commutative
monoid (under the natural operation hAi � hBi :¼ hABi). Moreover, the previous operation partitions the invertible n� n
circulant matrices into equivalence classes, say C�n=�, and consequently, ðC�n=�; �Þ becomes a group.

Let f ¼ x1xj2 . . . xjd þ x2xj2þ1 . . . xjdþ1 þ . . .þ xnxj2�1 . . . xjd�1 be an MRS function of degree d, with the SANF x1xj2 . . . xjd . We
associate to f the following (unique) circulant matrix equivalence class

ð1Þ

where the 1 bits (indicated above) appear in positions given by the indices in the SANF monomial of f.
For a binary (row) vector ða1; a2; . . . ; anÞ of dimension n, we let Dða1; a2; . . . ; anÞ � fijai ¼ 1g, and by abuse of notation,

DðCðaÞÞ ¼ DðaÞ. Similarly, for a single monomial term xi1 xi2 . . . xid of degree d in n variables, we define
Dðxi1 xi2 . . . xid Þ � fijj j ¼ 1;2; . . . ; dg. We can also extend this to the MRS function with this SANF, f ¼ xi1 xi2 . . . xid , as
Dðf Þ ¼ Dðxi1 xi2 . . . xid Þ, which is not unique, but we prefer (so not to complicate the notation) to consider all such sets
equal under a cyclic rotation permutation of the indices. That is, for Af as in (1), then
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