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hood search for local improvement. The heuristic maintains an elite set of high-quality
solutions throughout the search. After a fixed number of GRASP iterations, exterior path
relinking is applied between all pairs of elite set solutions and the best solution found is
returned. Exterior path relinking, or path separation, a variant of the more common interior

152';‘;2?;; problems path relinking, is first applied in this paper. In interior path relinking, paths in the neigh-
CRASP borhood solution space connecting good solutions are explored between these solutions
Variable neighborhood search in the search for improvements. Exterior path relinking, as opposed to exploring paths
Path relinking between pairs of solutions, explores paths beyond those solutions. This is accomplished
Path separation by considering an initiating solution and a guiding solution and introducing in the initiat-

ing solution attributes not present in the guiding solution. To complete the process, the
roles of initiating and guiding solutions are exchanged. Extensive computational experi-
ments on 190 instances from the literature demonstrate the competitiveness of this
algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Equity problems are a family of NP-hard optimization problems that are an actual concern in the context of facility loca-
tion, where the fairness among candidate facility locations is as relevant as the dispersion of the selected locations [36].
Given a set of elements, the main objective of these problems is to find a subset of those elements that minimizes a similarity
measure. These kinds of problems have also applications in the context of urban public facility location [36], selection of
homogeneous groups [3], dense/regular subgraph identification [20], and equity-based measures in network flow problems
[4]. In spite of all these applications, most of the previous works are focused on the opposite family of problems, the disper-
sion problems, in which the objective is to maximize the differences among the selected elements. The dispersion problems
have been widely studied. See Duarte and Marti [ 7] for a recent review of this problem. However, we have identified only one
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previous metaheuristic-based paper on equitable problems, in which Prokopyev et al. [29] adapt a simple generic GRASP
algorithm to solve several equitable problems.

Let G = (V,E) be an undirected complete graph, where V is the set of n vertices and E the set of n

()
(u, v) € Ewith u, v € V has an associated distance d,, between u and v. Dispersion, or diversity, problems (DP) consist in find-

edges. Each edge

ing a subset S C V with m elements, such that an objective function (based on the distances between elements in S) is max-
imized or minimized. According to Prokopyev et al. [29], the objective of a dispersion problem can be either to identify a
subset with (i) maximum distance among its elements (diversity problems), or (ii) with maximum similarity among them
(equity problems). The first class of problems has been intensively studied in the last ten years. For instance, Marti et al.
[24,25] and Gallego et al. [12] present several exact, heuristic, and metaheuristic-based methods for the maximum diversity
problem. Two important variants are, respectively, the sum (Maxsum DP) and minimum (Maxmin DP) of the distances in the
selected set [1].

Prokopyev et al. [29] propose four distinct equity-based functions to balance the diversity among the selected elements:
the mean-dispersion function minimizes the average dispersion of the selected elements; the generalized mean-dispersion
function, which is an extension of the mean-dispersion function, considers vertex-weighted graphs; and the min-sum and
the min-diff dispersion functions that consider the extreme equity values of the selected elements. In this paper we focus
on the last function, whose associated optimization problem is referred to as the Minimum Differential Dispersion Problem
(Min-Diff DP). The Min-Diff DP is strongly NP-hard, and it remains NP-hard even if sign restrictions for distances between
vertices are imposed [29]. Therefore, heuristic procedures emerges as the best option to obtain high quality solutions in
shorter computing time.

A feasible solution of the Min-Diff problem is a set S C V of m elements, where m is a given input parameter. Each feasible
solution has associated with it a cost which can be computed as follows. Let A(7) be the sum of distances between a vertex
v € S and the remaining elements of S. Formally,

A(0) = du.

ues
The objective function of a solution S, denoted by diff(S), is then computed as

diff (S) = max 4(u) — min 4(2).

Therefore, the Min-Diff problem consists of finding a solution S* C V with the minimum differential dispersion, i.e.

S* = argmin diff (S),
SCVm
where V,, is the set of all subsets of vertices in V with cardinality m.

Fig. 1a shows an example of a graph with six vertices and 15 edges with their associated distances. Fig. 1b and c depict two
possible solutions for the Min-Diff problem for m = 4. The selected vertices in the solution are shown in black while the edges in
each solution are highlighted by solid lines. The vertices not in the solution are shown in gray while the edges not in the solution
are dashed. To evaluate the quality of each solution, we first compute the 4(2) value for all the elements in the solution. In par-
ticular, Fig. 1b shows a solution where S = {A,B,D,E}, A(A) =3 +12+8=23,4B)=3+3+2=8,4D)=12+3 +6 =21,
and A(E) = 8 + 2 + 6 = 16. The diff-value is calculated by first selecting the vertices having the highest and lowest A-values
and then taking the difference of their A-values. In this solution, these vertices are, respectively, A and B, and therefore
diff (S) = 4(A) — A(B) = 23 — 8 = 15. If we now consider the solution S’ = {A, C,E, F} in Fig. 1¢, it is easy to verify that the asso-
ciated objective function value is diff (S') = 8. Considering that the Min-Diff problem is a minimization problem, solution S’ is
better than solution S. The rationale behind this is that the distances among the elements in S’ are more similar than those
among the elements in S.

Prokopyev et al. [29] present a basic mixed linear 0 — 1 formulation of the problem. Let L; and U; be lower and upper
bounds on the value of 37 dj;, i.e. i = >,y min{dy, 0} and U; = >~ s max{d;,0}. Then, the mixed linear 0 — 1 formulation
of the Min-Diff DP is as follows:

min t
trsx
st. t=>r—-s, i=1,...,n
TZZdinj*U[(‘l*Xi)#»Mi(l*X,‘), i=1,...,n
Jg#i

s<> dixi —L(1=x)+M"(1-x;), i=1,....,n

=
n
dxi=m xe{0,1}",
i=1

where M* is an upper bound on the U; values, M~ is a lower bound on the L; values, and the binary decision variable x; = 1 if
and only if node i € S.
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