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a b s t r a c t

Image restoration is one of the most fundamental issues in imaging science. Total variation
regularization is widely used in image restoration problems for its capability to preserve
edges. In the literature, however, it is also well known for producing staircase artifacts.
In this work we extend the total variation with overlapping group sparsity, which we
previously developed for one dimension signal processing, to image restoration. A convex
cost function is given and an efficient algorithm is proposed for solving the corresponding
minimization problem. In the experiments, we compare our method with several
state-of-the-art methods. The results illustrate the efficiency and effectiveness of the
proposed method in terms of PSNR and computing time.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Image restoration is one of the most fundamental issues in imaging science and plays an important role in many
mid-level and high-level image processing applications. On account of the imperfection of an imaging system, a recorded
image may be inevitably degraded during the process of image capture, transmission, and storage. In this paper, we consider
a common degradation model as the following linear system

g ¼ Hf þ g; ð1Þ

where g represent the blurred and noisy observation, f is the desired true image, and g is Gaussian white noise with zero
mean. H is a blurring matrix constructed from the discrete point spread function, together with the given boundary condi-
tions. Unless stated otherwise, we assume that the underlying images have square domains of size n� n and let g; f and g be
the n2-length vectors by lexicographically ordering the two-dimensional images, respectively.

It is well known that image restoration belongs to a general class of problems which are rigorously classified as ill-posed
problems [32,50]. To tackle the ill-posed nature of the problems, regularization techniques are usually used to obtain a stable
and accurate solution [30]. In other words, we seek to estimate the original image f by solving the following variational
problem:

min
f

1
2
kg � Hfk2

2 þ kuðf Þ
� �

; ð2Þ
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where �k k2 denotes the Euclidean norm, uðf Þ is conventionally called a regularization functional, and k > 0 is referred to as a
regularization parameter which controls the balance between fidelity term and regularization term in (2).

How to choose a good regularization functional uðf Þ is an active area of research in imaging science. In the early 1960s,
Phillips [44] and Tikhonov [49] proposed the definition of u as an l2-type norm (often called Tikhonov regularization in the
literature), that is, uðf Þ ¼ Lfk k2

2 with L an identity operator or difference operator. The functional uðf Þ of this type has the
advantage of simple calculations, however, it overly smoothes edges which are important features in human perception.
Therefore, it is not a good choice since natural images always have many edges. To overcome this shortcoming, Rudin
et al. [45] proposed using the total variation (TV) seminorm to replace the l2-type norm, that is, they set uðf Þ ¼ rfk k1. Then
the corresponding minimization problem is

min
f

1
2
kg � Hfk2

2 þ k rfk k1

� �
; ð3Þ

where rfk k1 ¼
Pn

i;j¼1 ðrf Þi;j
��� ��� and the discrete gradient operator r : Rn2 ! R2�n2

is defined by ðrf Þi;j ¼ ððD
ð1Þf Þi;j; ðD

ð2Þf Þi;jÞ
with

ððDð1Þf Þi;j ¼
f iþ1;j � f i;j if i < n;

f 1;j � f n;j if i ¼ n;

(

and

ððDð2Þf Þi;j ¼
f i;jþ1 � f i;j if j < n;
f i;1 � f i;n if j ¼ n;

(

for i; j ¼ 1;2; . . . ;n. Note that f i;j refers to the ððj� 1Þnþ iÞth entry of the vector f (it is the ði; jÞth pixel location of the n� n
image, and this notation is valid throughout the paper). Here, Dð1Þ and Dð2Þ are n2 � n2 the first-order finite difference matri-
ces in the horizontal and vertical directions, respectively. The problem (3) is commonly referred to as the ROF model. The TV
is isotropic if the norm �k k is the Euclidean norm and anisotropic if l1-norm is defined.

In the literature, many algorithms have been proposed for solving the ROF model (3). If H is the identity matrix, then the
problem (3) is referred to as the denoising problem. In the pioneering work [45], the authors proposed to employ a time
marching scheme to solve the associated Euler–Lagrange equation of (3). However, their method was very slow due to
CFL stability constraints [48]. Chambolle [6] studied a dual formulation of the TV denoising problem and proposed a
semi-implicit gradient descent algorithm to solve the resulting constrained optimization problem. He also proved his algo-
rithm was globally convergent with a suitable step size. In [25], Goldstein and Osher proposed the novel split Bregman iter-
ative algorithm to deal with the artificial constraints, their method had several advantages such as fast convergence rate and
stability. If H is a blurring operator, the model (3) is then related to the image deblurring problem. Wang and Yang et al. [51]
proposed a fast total variation deconvolution (FTVd) method based on splitting technique and constructed an iterative pro-
cedure of alternately solving a pair of easy subproblems associated with an increasing sequence of penalty parameter values.
Their approach belongs to penalty methods from the perspective of optimization. In [1], Beck and Teboulle studied a fast
iterative shrinkage-threshold algorithm (FISTA) which was a non-smooth variant of Nesterov’s optimal gradient-based algo-
rithm for smooth convex problems [41]. More recently, Chan et al. [9] proposed an efficient and effective method by impos-
ing box constraint on the ROF model (3). Their numerical experiments showed that their method could obtain much more
accurate solutions and was superior to some state-of-the-art algorithms for unconstrained models. If H is not known, the
problem (3) is then the commonly known as blind deblurring which is out of scope in this paper, we refer the reader to
see [26] and the related references therein.

Although TV regularization has been proved to be extremely useful in a variety of applications, it yields staircase artifacts
[10,16]. Therefore, the approaches involving the classical TV regularization often develop false edges that do not exist in the
true image since they tend to transform smooth regions (ramps) into piecewise constant regions (stairs). To avoid these
drawbacks, there is a growing interest for replacing the TV regularizer by the high order TV regularizer, which can comprise
more than merely piecewise constant regions. The majority of the high order norms involve second order differential oper-
ators because piecewise-vanishing second order derivatives lead to piecewise-linear solutions that better fit smooth inten-

sity changes [34]. In [36], the authors chose the regularization functional uðf Þ ¼ r2f
��� ���

1
. Then the minimization problem (2)

is treated as the following high order TV based scheme:

min
f

1
2
kg � Hfk2

2 þ k r2f
��� ���

1

� �
; ð4Þ

where r2f
��� ���

1
¼
Pn

i;j¼1 ðr2f Þi;j
��� ���

2
with ðr2f Þi;j ¼ ðDxxf Þi;j; ðDyxf Þi;j; ðDxyf Þi;j; ðDyyf Þi;j

� �
, for i; j ¼ 1;2; . . . ;n. Here ðDstf Þi;j; s; t 2

fx; yg denotes the second order difference of f at pixel ði; jÞ.
In our previous work [46], we used group sparsity concepts for the one dimension signal denoising problem. We showed

that, for general signal denoising and restoration, the groups (clusters) of large values may arise anywhere in the domain of
the signal. In this case, if the group structure was defined a priori, a group of large values may straddle two of the predefined
groups. Hence, it is suitable to formulate the problem in terms of overlapping groups. Then we utilized the overlapping group

J. Liu et al. / Information Sciences 295 (2015) 232–246 233



Download English Version:

https://daneshyari.com/en/article/392170

Download Persian Version:

https://daneshyari.com/article/392170

Daneshyari.com

https://daneshyari.com/en/article/392170
https://daneshyari.com/article/392170
https://daneshyari.com

