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a b s t r a c t

Multiple Kernel Learning (MKL) can boost classification performance through using
multiple kernels rather than a single fixed one. Unlike the traditional MKL with the implicit
kernels, Multiple Empirical Kernel Learning (MEKL) explicitly maps input data into multi-
ple feature spaces. This paper focuses on MEKL and proposes an effective Threefold Struc-
tural MEKL (TSMEKL). The first fold structure is the space structural information between
different mapped feature spaces. The second one is the class discriminant information
within each mapped feature space. The third one is the cluster structural information of
samples in each mapped feature space. The classical MEKL mainly pays attention to the
first two structures, but neglects the last one. The proposed TSMEKL introduces the cluster
structural information into MEKL. Doing so can simultaneously utilize the space, the class,
and the cluster information in the way from globality to locality. Therefore, TSMEKL
utilizes threefold structural information to result in the improvement of classification
performance. To the best of our knowledge, it is the first time to introduce the cluster
information into the MEKL framework. The main advantage of the developed TSMEKL is
considering different folds of data information to improve classification performance.
The experimental results validate the feasibility and effectiveness of TSMEKL. Moreover,
we discuss the theoretical and experimental generalization risk bound of the proposed
algorithm in terms of the Rademacher complexity.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Unlike the traditional kernel-based methods which only use single fixed kernel [36,38,42,46,50], Multiple Kernel Learning
(MKL) introduces multiple kernels into applications [3,9,53]. MKL is flexible and effective in depicting heterogeneous data
sources. It is known that MKL maps the input sample x into different feature spaces Fls, UlðxÞ : x! F l; l ¼ 1 . . . M
[3,30,43]. In practice, the mapping UðxÞ has two representations including the implicit and the explicit ones denoted by
UiðxÞ and UeðxÞ, respectively. The Implicit Kernel Mapping (IKM) UiðxÞ is achieved through introducing a kernel function
kðxi; xjÞ ¼ UiðxiÞ �UiðxjÞ, which implicitly determines the geometrical structure of the mapped data in feature spaces. Most
of the existing MKL adopts IKM and thus is called Multiple Implicit Kernel Learning (MIKL). In contrast, the Empirical Kernel
Mapping (EKM) UeðxÞ can provide the explicit features of the x in the mapped Ue-space [40,55,56]. The MKL with the EKM is
called as Multiple Empirical Kernel Learning (MEKL). Both IKM and EKM have their own characteristics. The UiðxÞ is supposed
to avoid the curse of dimensionality and simultaneously keep the linearity property of learning machines in the mapped
space. The UeðxÞ is supposed to be much easier in processing and analyzing the adaptability of kernels.
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Although MIKL has been widely applied [30,43,44], there is little attention on the variation of the mapping from the input
space into the feature space [54]. Thus, in this paper we focus on MEKL. MEKL can be viewed as a data-dependent kernel
learning technique since UeðxÞ is directly generated based on the input data. The classical MEKL mainly introduces the exist-
ing algorithms into EKM and demonstrates the differences between EKM and IKM. However, the inherent characteristics of
EKM are less discussed, which urges us to investigate the inherent structures of the feature spaces generated by multiple
EKMs. Thus, here we give threefold structures including the space, the class, and the cluster in the feature spaces generated
by multiple EKMs. The first fold structure is the space structural information between different mapped feature spaces. The
second one is the class discriminant information within each mapped feature space. The third one is the cluster structural
information of samples in each mapped feature space. Accordingly, we develop a novel Threefold Structural MEKL named
TSMEKL. The proposed TSMEKL can simultaneously utilize the space, the class, and the cluster information in the way from
globality to locality and improve classification performance. To the best of our knowledge, this work is the first time to intro-
duce the cluster information to MEKL. The main contribution of the developed TSMEKL is to consider different fold structure
information to boost classification performance.

In order to validate the effectiveness of the proposed TSMEKL, we employ our previous MEKL work called MultiK-MHKS
[54] as the incorporated paradigm. MultiK-MHKS explicitly maps the input data into multiple feature spaces, each of which
is expected to exhibit some geometrical structures of the original data from its own perspective. In doing so, all the feature
spaces can complement the subsequent learning task. Moreover, MultiK-MHKS aims to make the projection of each feature
space onto their corresponding basis vectors maximally close to the average projection of all feature spaces. Thus,
MultiK-MHKS owns the space and the class structure information. Here, the proposed TSMEKL firstly captures the underly-
ing structures distributing in the mapped samples by some unsupervised clustering techniques. Then, TSMEKL obtains
multiple clusters to enclose the data of each class. Finally, TSMEKL introduces different clusters into the learning framework
of MultiK-MHKS to achieve the threefold structure knowledge. The experimental results validate the feasibility and effec-
tiveness of TSMEKL. We further discuss the theoretical and experimental generalization risk bound of TSMEKL in terms of
the Rademacher complexity. It can be found that the advantage of TSMEKL not only inherits the structural information of
both spaces and classes, but also adopts the cluster information, where the samples in the same cluster should be distributed
as tightly as possible.

The rest of this paper is organized as follows. Section 2 reviews the related work of MKL. Section 3 gives the architecture
of the proposed TSMEKL. Section 4 reports all the experimental results and gives further discussions on TSMEKL. Section 5
shows a theoretical and experimental generalization risk bound discussion on TSMEKL. Finally, the conclusions are pre-
sented in Section 6.

2. Related work

The classical MKL usually employs a linear convex combination of M kernels, i.e. G ¼
PM

l¼1alKl; al P 0,
PM

l¼1al ¼ 1. In the
literature [30], Lanckriet et al. introduce a convex Quadratically Constrained Quadratic Program (QCQP) to combine multiple
kernels. To extend the method of Lanckriet et al. to large scale problems, Bach et al. [3] reformulate the QCQP as the Second-
Order Cone Programming (SOCP) problem. Meanwhile, Sonnenburg et al. [43,44] reconstruct QCQP as the Semi-Infinite
Linear Program (SILP) which recycles the standard Support Vector Machine (SVM) implementations [5,11,21]. Moreover, Jian
et al. [24] address the issue of multiple kernels for Least Squares Support Vector Machine (LSSVM) by formulating a Semi-
Definite Programming (SDP). Recently, researchers give some new formulations for multiple kernel optimization [15,45,34].
Hu et al. [20] introduce a sparse formulation into MKL to result in less support vectors. In their sparse formulation, the final
ensemble kernel function can be calculated as a linear combination of kernels automatically. Yang et al. [58] discuss the
problem of MKL in terms of searching for the optimal kernel weights. They employ the Lp-norm constraint onto the kernel
weights in order to maintain all information of the base kernels. To group the features during the model development, Sub-
rahmanya et al. [45] introduce a new Sparse MKL named SMKL for signal processing. SMKL is efficient in implementing the
kernel-based methods by a convex primal formulation. Further, Schölkopf et al. [41] find that the Gram kernel matrix gen-
erated by all the training data does not always perform well when the matrix has large diagonal values. Hu et al. [20] apply a
sparse formulation into MKL to generate a linear combination of multiple kernels, which significantly increases the running
speed. Zhang et al. [60] discuss how to effectively map the input data into a high-dimension hidden space by a set of hidden
non-linear functions. Their algorithm adopts different kinds of kernel functions and can result in a superior performance.

It can be found that the above MKL adopts IKM to implicitly represent the feature spaces. It is not necessary to show the
exact forms of samples in the feature spaces since the geometrical structures are implicitly represented by the inner-product
form kerðxi; xjÞ ¼ UiðxiÞ �UiðxjÞ. In contrast, EKM is easier to access and study the adaptability of the kernel for the input space
than IKM [40,56]. Schölkopf et al. [40] discuss the relationship between the input and the feature spaces with the empirical
and implicit kernels. They find that both IKM and EKM have the same geometrical structure. Kim et al. [25] denote that IKM
has two problems. The one is the rising computational cost with respect to the increasing training size. The other is to re-
compute the whole decomposition when updating the eigenvectors with new data. However, EKM can avoid the above
issues and be more flexible. Liang et al. [33] demonstrate that the separating hyperplane based on EKM is manipulable in
the feature space. Further, Xiong et al. [56] derive an effective kernel optimization algorithm through employing a data-
dependent kernel. Their idea is to maximize the class separability of the data in the empirical feature space. Wang et al.
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