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a b s t r a c t

One of the most promising learning kernel methods is the lp-type multiple kernel learning
proposed by Kloft et al. (2009). This method can adaptively select kernel function in super-
vised learning problems. The majority of the studies associated with generalization error
have recently received wide attention in machine learning and statistics. The present study
aims to establish a new generalization error bound under more general frameworks, in
which the correlation among reproducing kernel Hilbert spaces (RKHSs) is considered,
and the restriction of smooth condition on the target function is relaxed. In this case, the
interaction between the estimation and approximation errors must be simultaneously
regarded. In this investigation, optimal learning rates are derived by applying the local
Rademacher complexity technique, which is given in terms of the capacity of RKHSs
spanned by multi-kernels and target function regularity.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Kernel-based learning methods, such as support vector machines (SVM), have been extensively applied in supervised
learning tasks, including classification and regression. These methods implicitly map the input data into a high dimensional
feature space, in which the implicit mapping U is defined by a kernel function that returns the inner product hUðxÞ;UðyÞi
between the images of data points x and y. Hence, these kernel-learning approaches are computationally more efficient than
the other methods that are required to project x and y explicitly into feature space. From a practical perspective, kernel-
based algorithms are defined in an infinite functional space. However, they can efficiently work in a finite space for many
applications, and can capture nonlinear structures in many real-world data sets.

Kernels and associated RKHSs are simple and can be generally applied; thus, they play an increasingly important role in
machine learning and statistics. Selecting regularization parameters is an immediate concern when kernel is provided. This
is typically solved by conducting cross-validation or generalized cross-validation [16]. However, most kernel-based learning
algorithms critically rely on the selection of kernel function, which induces the issue of choosing the optimal kernel from a
collection of candidates.

Numerous kernel selection methods have been proposed in the literature. For example, by using the outer product of the
label vector as the ground-truth, The kernel target alignment actualized by Cristianini et al. [13] and Cortes et al. [9] aims to
learn the entries of a kernel matrix using the outer product of label vector as ground truth. A gradient descent algorithm was
developed by Chapelle et al. [12] and Bousquet and Herrmann [5] to minimize an estimate of SVMs generalization error
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using the outer product of label vector as ground truth over a set of parameters defined in kernels sequence. The hyperker-
nels method was introduced by Ong et al. to directly analyze kernel function in an inductive setting. Alternative kernel selec-
tion approaches include the DC and semi-infinite programming realized by Argyriou et al. [1] and Gehler and Nowozin [15],
respectively. Nevertheless, these approaches mentioned above often lead to non-convex optimization problems, wherein
ensuring computational efficiency is difficult. Kernel learning algorithms with different settings for the width parameter
of Gaussian kernels must be explored to obtain an optimal parameter from a specified interval [32]. These particular
approaches can result in a standard convex optimization program, that is, the Gaussian kernels, which correspond to a
sequence of capacity-limited functional spaces. However, such algorithm lacks the flexibility of modeling data with great
complexity. Using classification information, Zamania et al. [37] proposed to determine a kernel function for kernel principal
components and kernel linear discriminant analyses. Learning kernels with linear combinations of multiple kernel functions
has recently received considerable attention in machine learning. Kloft et al. [17] proposed the so-called lp-norm ð1 < p 6 2Þ
multiple kernel learning (MKL) method, which has been proven useful and effective in terms of theoretical analysis and prac-
tical applications.

lp-norm MKL is an empirical minimization algorithm that operates on multi-kernel class, which consists of functions

f 2 HKh
: Kh ¼

PM
m¼1hmKmj khkp 6 1; h P 0

n o
, where M is the number of given candidate kernels. lp-norm MKL has been suc-

cessfully applied in solving real-world problems. For example, Kloft et al. [18] originally implemented the algorithm to clar-
ify problems in bioinformatics. The results of his research revealed that lp-norm MKL ðp > 1Þ achieves more accurate

prediction results than the state-of-the-art methods. Yu et al. [36] developed a l2-norm MKL algorithm and applied it to
genomic data fusion. The results of their investigation showed that this algorithm achieved comparable performance with
the conventional SVM–MKL algorithms. Moreover, in generic object recognition research, Nakashika and Suga [24] proposed
a novel feature selection method based on MKL. Their experimental results illustrated the effectiveness of the proposed auto-
matic feature selection method. Some researchers recently interpreted MKL from different views. For instance, Xu et al. [35]
presented a novel soft margin perspective for MKL under more general frameworks, and many existing MKL can be viewed as
special cases. Mao et al. [23] introduced a novel probabilistic interpretation of MKL and proposed a hierarchical Bayesian
model that can simultaneously learn the proposed data-dependent prior and classification.

Over the past few years, MKL has been theoretically analyzed without a hitch. Cortes et al. [8,9] obtained the convergence

rates associated with lp-MKL of the order
ffiffiffiffiffiffiffiffiffiffi
logðMÞ

n

q
with p ¼ 1 and M1�1=pffiffi

n
p with 1 < p 6 2. Kloft et al. [18] derived a similar con-

vergence bound with improved constants. Bartlett et al. [6] and Kloft et al. [19] adopted localization techniques, including
the local Rademacher complexities, and conventionally obtained sharp learning rates. Kloft and Blanchard [19] provided a
localized convergence of lp-MKL. However, their analysis relied on a strong condition that the underlying RKHSs are no cor-
related with one another. Considering the correlation between candidate kernels, Suzuki [30] derived the fast learning rates
of dense-type regularization in a unifying framework, which included lp-MKL as a special case.

However, these algorithms were conducted under a strong assumption that the target function is smooth and lies in the
hypothesis space where the algorithm works. The approximation error is neglected and the relationship between regulari-
zation parameter and smoothness of the target function cannot be completely reflected. In the literature of statistical learn-
ing theory, generalization error = estimation error + approximation error for a given estimator (see details in [4]). Multiple
kernels evidently lead to additional functional complexity. Hence, learning with these kernels can only achieve a better per-
formance for generalization ability when it can significantly improve approximation ability. Based on this argument, the case
in which the target function does not lie in the hypothesis space can be compellingly considered. In such instance, previous
techniques of analyzing lp-MKL are no longer valid because the upper bound of the estimator goes to infinity with the
increase of the sample size n, which affects the upper bound of the estimation error. Therefore, more explicit analysis meth-
ods of deriving the optimal learning rates under general conditions must be developed. To the best of our knowledge, no
existing study has explicitly analyzed how the correlations among RKHSs affect the learning rates under the multi-kernel
learning settings.

The present study primarily aims to derive the optimal learning rates of lp-MKL under a mild condition, that is, the target
function does not lie in kernel classes. In this case, optimal rates can be obtained by uniformly bounding the second
moments of functions from an adequate class by their expectations. Classical empirical process theory of the local Radem-
acher complexities is extended to more general cases. Thus, the optimal rates in this investigation are derived with an iter-
ative technique. This study generally provide beneficial contributions in the following aspects:

� Optimal learning rates are obtained by considering the correlation structure of the underlying RKHSs. The final result
shows that the correlation greatly affects convergence rates.
� Convergence rates are established under a mild assumption on target function that effectively relaxes function constrains.
� As a by-product, a tight bound is provided for concentration inequality by applying the local Rademacher complexity

under the general conditions stipulated in Section 5. Moreover, the advantages of MKLin terms of approximation ability
are discussed.

The rest of this paper is organized as follows. Section 2 formulates the classical supervised learning problem, introduces
the MKL algorithm for the regression problem, and provides main assumptions for theoretical analysis. Section 3 presents
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