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tion. This work presents new theoretical results concerning this optimization problem. They
include an improved upper bound on the optimal objective value, improved rules for simpli-
fying the problem and a rule for reducing the solution tree. Accordingly, an accelerated
approach for finding the optimal objective value is presented, and represents an improve-
ment on earlier approaches. Its potential applications are discussed.
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1. Introduction

This work considers the following linear objective function with a fuzzy relation equation.
m
Min Z(x) =) cx;, 1)
i-1

subject to xo A = b, (2)

“w n

where x € [0,1]™, ¢; € R A = [aj]mxn With 0 < a; < 1, b=(by,...,b,) is an n-dimensional vector with 0 < b; < 1, and “o” repre-
sents the max-min composition. Let X(A,b) = {x € [0,1]"|x o A= b} be the solution set of (2). It is well-known that when
X(A,b) # ¢, X(A,b) can be completely determined by the unique maximum solution X = (Xq,...,Xn), and a finite number of
minimal solutions [2]. Here x;=1 if a;<b; for all 1<j<n, otherwise X; =min{bja; >b;} [9]. We define
X' = (x1)1m <X* = (%), if and only if x! < x? for all 1 <i< m. A solution x € X(A,b) is a minimal solution if any x € X(A,b),
x < x implies that x = x. A solution x* € X(A,b) is optimal for problem (1) and (2) if Z(x*) < Z(x) for all x € X(A,b). For any solu-
tion x = (x;)1.m € X(A,b), x; is a binding variable if min (x; a;) = b; holds for some 1 <j<n.

To simplify the problem that is composed of Eqs. (1) and (2), as many decision variables x; as possible should be
optimized. Based on this fact, Fang and Li [3] separated problem (1) and (2) into two sub-problems:

m
min Z clxi,
i=1

subject to xocA=Db (3)
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and
m
min > cx;,
i=1
subject to xoA=b, 4)
where
1 Ci if C,‘<O d 5 {0 if C,‘<0 f 1l .
= P = 1<i<m. 5
! {0 if ¢=0 and G ¢ if ¢g=0 ord Lsm ®)

Clearly, the maximum solution x to (2) when it exists, solves problem (3), and one of the minimum solutions x* = (x}),..,, to

(2) solves problem (4) [4,8,12]. Therefore, the solution x* = (x;),,,, defined by

N x if ¢=0
X = _ .
! x if ¢ <O

Txm

for 1<ig<m,

solves problem (1) and (2) [3]. The maximum solution to (2) is easily determined, but finding the minimal solutions may be
difficult. Algorithms exist for finding the set of minimal solutions to (2)[1,7,9-11,15]. Since the optimal solution to problem
(4) is among the minimal solutions to (2), one possible way to find the optimal objective value is first to compute all minimal
solutions to (2) and then, by enumeration, to find the optimal objective value. The other approach for finding the optimal
objective value is the branch-and-bound method. Fang and Li [3] converted problem (4) into a 0-1 integer programming
problem and solved it by the branch-and-bound method. Subsequently, Wu et al. [14] improved their method by providing
a fixed upper bound on the optimal objective value. Wu and Guu [13] recently improved on that work by updating the
“fixed” upper bound on the optimal objective value. Two numerical examples indicate that this improvement actually re-
duces the computational burden of finding the optimal objective value. This work improves upon the work of Wu and
Guu [13]. More reducing rules are devised, and an improved initial upper bound is obtained. This improvement enables
the problem to be solved more quickly than in previous work [3,13,14], in the sense that fewer nodes in the solution tree
are visited.

The rest of the paper is organized as follows. Section 2 contains the primary results. Section 3 presents three examples
that demonstrate the proposed method outperforms available approaches [3,13,14] and its application to the optimal
three-tier multimedia streaming services problem. Section 4 finally draws conclusions.

2. Simplifying and solving the problem

This section firstly presents some rules for reducing problem (1) and (2), and then presents a procedure for solving it. For
convenience, the coefficients c; are arranged in increasing order and b; arranged in decreasing order, such thatc; < c; < -+ <
cmand by > by > --- > by; also X(A,b) # ¢ is assumed. The method of Fang and Li [3] is improved by setting ¢! = ¢; for ¢; <0
and ¢? = ¢; for ¢; > 0 in (5). In this manner, % is found to solve problem (3), and one of the minimum solutions to (2) also solves
problem (4). Since problem (3) is solved by X, x; = X; for ¢; < 0 is determined for any optimal solution x* = (x}),,,, to problem
(1) and (2). The x; terms are utilized to reduce problem (4) as follows. Let J; = {1 <j < n|min(x;,a;3) = bj}, 1 <i< m. For
each x;, since min(x;, a;) = b;, x; satisfies the jth equation for all j € J;. Thus, the size of problem (2) can be reduced by deleting
row i, and column j of A and by, for all j € J;. Therefore, the following rule is obtained.

Rule 1. Delete row i, and column j of A and b;, for all j € J;, and set x; = X; for any optimal solution x* = (x;) where ¢; < 0.

1xm?
Remark 1. Rule 1 is similar to case 1 in the work of Loetamonphong and Fang [6, p. 512] and Rule 1 in the work of Shieh [12],
who considered this optimization problem with the max-product and the max-Archimedean t-norm compositions,
respectively.

For convenience, the reduced constraint equation is also denoted by (2). The remaining task, which is to solve the
problem that is composed of Egs. (1) and (2) is to solve problem (4), constrained by the reduced equations (after Rule 1 has
been applied). Let Xo(A, b) be the set of minimal solutions to (2). Since only the optimal solution to problem (4) can be found
in Xo(A, b), two rules for simplifying the constraint equation are presented below. Let I; = {i € I|min(x;, a;) = b;}, j € J, where
J is the column index set of the reduced matrix A.

Rule 2 [11]. If I, C I, and by > b, then deleting column [ of A and b, does not affect Xy(A,b).
Remark 2. Wu and Guu [13] restricted Rule 2 in the case of I = {i}, a singleton set. Clearly, Rule 2 is an extension of the cor-
responding rule of Wu and Guu [13].

Lemma 1 [11]. If x = (X;)ic; € Xo(A,b) and min(x;, a;) = bj,, then iel; and min (x;ay)="by, for all k> j; and i< I, where
b;, = max{b;| min(x;,a3) = b;, j € J}.
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