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1. Introduction

The study of fuzzy relation equations is one of the most appealing subjects in fuzzy set theory, both from a mathematical
and a systems modelling point of view (see [6]). In 1976, Sanchez introduced the fuzzy relation equations with sup-inf
composition (see [21]). Then several authors have further enlarged the theory with many papers (see [9,15] for an extensive
bibliography). Among them, Higashi et al. [12] proved that the solution set of a finite fuzzy relation equation over the unit
interval [0,1] can be determined by finite number of minimal solutions and the greatest solution, since then, many works
about these kinds of equations focus on finding a more simple algorithm to calculate all minimal solutions (see e.g.
[14,15,27]). In 2002, Chen et al. [3] proved that the problem of solving finite fuzzy relation equations over the unit interval
[0,1] is an NP-hard problem in terms of computational complexity. On a finite fuzzy relation equation with sup-inf compo-
sition assigned over a Brouwerian lattice, Zhao [30] determined its entirely solution set, De Baets [6] constructed all minimal
solutions and Wang [24,25] showed that every solution has a minimal solution and gave a formula of the number of minimal
solutions if its right-hand side has irredundant finite decomposition into join-irreducible elements. There are also other pa-
pers which discussed the topic on solving fuzzy relation equations with different composite operators over various lattices
(seee.g.[7,11,13,16-20,22,23,26]. In particular, Zhang et al. gave the solution of matrix equations in distributive lattices and
studied the problem of solving a finite relation equation with sup-conjunctor composition over a complete lattice in 1991
and 2008, respectively (see [28,29]). Compared with linear algebraic systems, fuzzy relation equations are just such equa-
tions which replace the plus-product composition by sup-inf composition and replace the field with a lattice. Therefore,
it is a natural idea that whether we can solve them in a similar way as those of linear algebraic systems. In fact, as algebraic
structure, a linear (vector) space is a special case of a module over a ring, i.e. a linear space is a unitary module over a field,
and a bounded Brouwerian lattice is a commutative semiring (see [1,10]). With these in mind, this paper investigates a fuzzy
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relation equation with sup-inf composition over a bounded Brouwerian lattice (L, V,A,0,1) and describes its solutions with n-
dimensional vectors. Let n = {1,...,n} be the set of the first n natural numbers, and let (a;,as,. . .,a,)" denote the transpose of
(aq,ay,...,a,), i.e. a column vector. Then the fuzzy relation equation is defined as follows

Aox=h, (1)
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T

where @ is the sup-inf composition, X = (x;);., is unknown, A = (a;)mxn and b = (b;);,, are known with ay, b; € L, i.e.,

(@1 AXq) V-V (ain AXy) =b;, Tem.

Let X1 = {X:AoX=Db}.

This paper is organized as follows. For the sake of convenience, some notions and previous results are given in Section 2.
Sections 3 and 4 are due to describe the solution sets of fuzzy relation equations over the unit interval [0,1] and bounded
Brouwerian lattices in a view of semilinear spaces, respectively. Conclusions are given in Section 5.

2. Previous results
In this Section, we give some definitions and preliminary lemmas.

Definition 2.1 (Zimmermann [32] and Golan[10]). A semiring £ = (L, +,-,0,1) is an algebraic structure, such that

(i) (L,+,0) is a commutative monoid,
(ii) (L,-,1) is a monoid,
(iii) r-(s+t)=r-s+r-tand (s+t)-r=s-r+t-rhold for all r,s,t € L,
(iv) 0-r=r-0=0 holds for all r € L,
(v) 0#1.

A semiring is commutative if r- ' =1 -r for all 1,7’ € L.

Example 2.1 (Zhao et al. [31]). The fuzzy algebra [0,1] under the operations a+b=sup{a,b} and a-b =inf{a,b}, the
nonnegative real numbers with the usual operations of addition and multiplication, the nonnegative integers under the
operations a + b = g.c.d.{a,b} and a - b = l.c.m.{a,b}, where a,b € L (where L is the set of all the nonnegative integers) and g.c.d.
(resp. l.c.m.) stands for the greatest (resp. smallest) common divisor (resp. multiple) between a and b, are all commutative
semirings with 0,1.

The following definition of a semimodule is taken from Golan [10].

Definition 2.2. Let £ = (L, +,-,0,1) be a semiring. A left semimodule is a commutative monoid .A = (A, +4,0,4) for which an
external multiplication L x A — A, denoted by ra, is defined and which for all r,r” € L and a,a’ € A satisfies the following
equalities:

(i) (r-ra=r(ra),

(ii) r(a + aa') =ra + 4rd,
(iii) (r+r)a=ra+ ara,
(iv) la=aq,

(V) 0a =104 = 0,4.

The definition of a right semimodule is analogous, where the external multiplication is defined as a function A x L — A.

Definition 2.3. Let £ = (L,+,-,0,1) be a semiring. Then a semimodule over £ is called a semilinear space.

Note that in Definition 2.3, a semimodule stands for a left £-semimodule or a right £-semimodule as the same as that of [8].
The notion of a semilinear space first appeared in [16] in connection with power algebras over semirings, it has been used later
in [8] to explain fuzzy systems and their principles. Elements of a semilinear space will be called vectors and elements of a
semiring scalars (called also coefficients). The former will be denoted by bold letters to distinguish them from scalars.

Without loss of generality, in what follows, we consider left £-semimodules for convenience of notation.

Example 2.2. Let £ = (L, +,-,0,1) be a semiring, V(L) = {(a1,as,...,a,)" : a; € L,i € n}. Define
X+y= (X] + Y1, X2+ Y2, Xn +yn)T7
X =(r-X,rXo,...,r-X;)"

for X = (X1,X2,. . .X2), ¥ = Y1.Y2,- . »¥n)T € Vo(L) and r € L. Then V,, = (V,(L), +,0,.1) is a semilinear space over £ with the zero
element 0,,; =(0,0,...,0)". Similarly, we can also define the operations of addition and external multiplication on row
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