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a b s t r a c t

Itemset mining looks for correlations among data items in large transactional datasets. Tra-
ditional in-core mining algorithms do not scale well with huge data volumes, and are hin-
dered by critical issues such as long execution times due to massive memory swap and
main-memory exhaustion. This work is aimed at overcoming the scalability issues of exist-
ing in-core algorithms by improving their memory usage. A persistent structure, VLDB-
Mine, to compactly store huge transactional datasets on disk and efficiently support
large-scale itemset mining is proposed. VLDBMine provides a compact and complete rep-
resentation of the data, by exploiting two different data structures suitable for diverse data
distributions, and includes an appropriate indexing structure, allowing selective data
retrieval. Experimental validation, performed on both real and synthetic datasets, shows
the compactness of the VLDBMine data structure and the efficiency and scalability on large
datasets of the mining algorithms supported by it.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Itemset mining is an exploratory data mining technique, widely employed to discover valuable, non-trivial correlations
between data items in a transactional dataset. The first attempt to perform itemset mining [3] was focused on discovering
frequent itemsets, i.e., patterns whose observed frequency of occurrence in the source data is above a given threshold. Fre-
quent itemsets find application in a number of real-life contexts, such as market basket data [3], recommendation systems
[19], and telecommunication networks [20]. Frequent itemset mining algorithms have traditionally addressed time scalabil-
ity, with increasingly efficient solutions that limit the combinatorial complexity of this problem by effectively pruning the
search space. To efficiently extract knowledge, most algorithms exploit ad hoc data structures that greatly rely on the avail-
able physical memory. However, while the size of real-world databases steadily experiences an exponential growth, mining
algorithms are still lagging behind, yielding poor CPU utilization and massive memory swap, thus significantly increasing
execution time, and facing the serious bottleneck of main memory. In spite of the increasing availability of physical memory
in modern systems and CPUs, the continuous increase in the amounts of analyzed data prompts the need for novel strategies
to speed and scale up data mining algorithms. New methods that utilize the secondary storage in the mining process should
be the target.

Recently, disk-based extraction algorithms have received an increasing interest. These approaches rely on disk-based data
structures to represent the transactional dataset. However, the proposed structures support specific mining algorithms, they
typically address specific data distributions and, in general, they often provide only a limited scalability.
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This motivates the work described in this paper. This framework, named VLDBMine, includes a persistent transactional
data representation and a set of creation and access primitives, to efficiently support large-scale itemset mining. The chal-
lenge of this work is to effectively support existing in-core algorithms by enhancing memory usage, thus overcoming scala-
bility issues. The VLDBMine data structure can be profitably exploited to support a variety of state-of-the-art in-core itemset
extraction algorithms (e.g., maximal and/or closed itemsets) when the latter outstrip the available memory. Two strategies
(loosely- and tightly-coupled) have been proposed to integrate VLDBMine into such mining algorithms, enhancing their sca-
lability. In particular, the tightly-coupled strategy offers the best scalability, by loading, in each mining step, only the data
locally required.

VLDBMine is based on a compact disk-based representation, called Hybrid-Tree (HY-Tree), of the whole transactional
dataset. The HY-Tree exploits two different array-based node structures to adapt its data representation to diverse data dis-
tributions. Both structures are variable length-arrays that store different information to compactly represent the dense and
the sparse portions of the dataset, respectively. The selection of the node types is automatically driven by the data distribu-
tion. VLDBMine also includes an indexing structure, named the Item-Index, which supports selective access to the HY-Tree -
portion needed for the extraction task.

The VLDBMine performance has been evaluated by means of a wide range of experiments with datasets characterized by
different size and data distribution. As a representative example, VLDBMine has been integrated with LCM v.2 [31], an effi-
cient state-of-the-art algorithm for itemset extraction. The run time of frequent itemset extraction based on VLDBMine is
always comparable to or better than LCM v.2 [31] accessing data on a flat file. VLDBMine-based frequent itemset extraction
also exhibits good scalability on large datasets.

The paper is organized as follows. Section 2 introduces the VLDBMine data structure, while Section 3 describes its phys-
ical organization. Section 4 presents the proposed technique to build VLDBMine on disk. Section 5 discusses the loosely-cou-
pled and tightly-coupled integration strategies, and describes data retrieval techniques to support the data loading phase.
Section 6 presents the integration of VLDBMine in the LCM v.2 algorithm. Section 7 discusses how to address the main issues
in incrementally updating VLDBMine. The experiments evaluating the effectiveness of the proposed data structure are pre-
sented in Section 8. Section 9 reviews existing work in the wide area of frequent itemset mining, focusing on different disk-
based solutions proposed in the literature. Finally, Section 10 draws conclusions and presents future developments of the
proposed approach.

2. The VLDBMine data structure

The VLDBMine persistent representation of the dataset is based on the HY-Tree data structure. The HY-Tree is a prefix-
tree-based structure, which encodes the entire dataset and all the information needed to support transaction data retrieval.
This tree is hybrid, because two different array-based node structures coexist in it to represent tree nodes and, thus, to
reduce the tree size by adapting the data structure to the data distribution. VLDBMine also includes the Item-Index, an aux-
iliary structure providing selective access to the HY-Tree portion needed for the current extraction task. VLDBMine has been
designed to efficiently scale up the itemset mining process on very large transactional datasets. According to the standard
definition of transactional datasets, an itemset represents a co-occurrence of items without any temporal ordering of events
[18]. A dataset, used as a running example, is reported in Table 1. The corresponding HY-Tree and Item-Index are shown in
Figs. 1 and 2, respectively.

2.1. The HY-Tree data structure

The HY-Tree has a prefix-tree-like structure. Each transaction is represented by a single path, but a prefix path may rep-
resent the common prefix of multiple transactions. In the paths, items are sorted by decreasing values of their global support,
given by the number of dataset transactions including each item, and by increasing lexicographic order in case of equal
support.

Table 1
Example dataset.

TID Items TID Items

T1 a, b, e, r, x T12 c, e, f, i, o, p, x
T2 h, l, o T13 b, d, g, p, x
T3 a, c, g, i, k T14 d, p
T4 b, d, e, g, p, v T15 b, h
T5 d, j, p T16 b, h, l, q
T6 b, i, n, r, s, u T17 a, e, j, k, w, x
T7 c, h, z T18 a, b, e, r, t, x
T8 a, i, s, t T19 b, d, e, m, n, x
T9 h, i T20 b, h, q
T10 a, b, i, n, r, z T21 h, l, v, w
T11 b, d, e, n, x
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