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a b s t r a c t 

We investigate the connection between the asymptotic bias of the well-known Nadaraya–

Watson kernel regression and the mean shift (MS) vector with the Gaussian kernel. We 

first show that the asymptotic bias for the univariate Nadaraya–Watson kernel regression 

can be estimated using the MS scalar. Then, we investigate the general D -dimensional case 

( D > 1) and derive a formula for the asymptotic bias as a function of the MS vector. We 

show that when the regression function is a linear function of its entries, then the asymp- 

totic bias can be represented as a linear function of the MS vector. The MS algorithm for 

the univariate and the linear cases can be used to find points where the Nadaraya–Watson 

kernel regression gives an unbiased estimate. Furthermore, this connection suggests that 

exploiting the theoretical properties of the asymptotic bias of the Nadaraya–Watson kernel 

regression may be helpful to show the convergence of the MS algorithm. Through the sim- 

ulations, we show that how the given theoretical results can be used to estimate the bias 

of the estimated clean signal by just observing the noisy signal. Having access to the bias 

of the estimator, enables us to evaluate the accuracy of the estimated clean data, which 

later will be used to design a quantizer. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The Nadaraya–Watson kernel regression is a nonparametric, statistical technique that takes a limited set of data points as 

its input and estimates a continuous dependent variable using a kernel function that specifies the amount of contribution of 

these points. It is an important method for analyzing and finding relations between pairs of random variables ( X , Y ), where 

X is an explanatory multidimensional vector and Y is a scalar response. Moreover, it provides a general relation between X 

and dependent variable Y without assuming any parametric assumptions on the observed data. 

It is well-known that for a given value of X = x the choice of expectation (i.e., regression) of Y given x should minimize 

the expected prediction error [21] . Since in general the density functions are not available, the Nadaraya–Watson estimator 

uses a set of paired observations (x i , y i ) , i = 1 , . . . , n for estimating the conditional expectation of the dependent variable, Y , 

given the independent variable, X [36] . In addition to fitting a curve to a data set, this form of multivariate kernel regression 
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has been used in many applications including image processing [28,35] , classification [24] , sensor fusion problems [32] , and 

expert trading systems [38] (see [4] for other applications). 

The performance of an estimator can be judged by looking at its properties, such as bias, mean square error, consistency, 

and variance. The asymptotic bias for the local linear least squares kernel estimators was studied by Ruppert and Wand and 

the leading bias term has been derived [33] . They showed that the leading term of the asymptotic bias does not depend 

to the observations x 1 , . . . , x n [33] . Furthermore, the computed leading bias term in [33] is a function of curvature and 

smoothing, which implies that the bias term increases at the points with high curvature or when performing high amount 

of smoothing. 

The mean shift (MS) technique is a simple nonparametric approach that was proposed by Fukunaga and Hostetler to 

estimate the modes (maxima) of a probability density function. Modes of a density function can be used to solve different 

problems in machine learning including image segmentation [37] , clustering [25] , object tracking [7,40] , and edge detection 

[18] . A generalized version of the MS algorithm has been introduced by Cheng and its application for clustering has been 

discussed [5] . The MS algorithm became popular in the machine learning society when Comaniciu and Meer demonstrated 

its potential usage for feature space analysis [6] . The MS algorithm initialize the mode estimate sequence to an arbitrary 

point 1 and moves it to a weighted average of the neighboring points in each iteration. The algorithm repeats the previous 

procedure until the changes in output points become negligible. 

We investigate the connection between the MS algorithm and the asymptotic bias of multivariate kernel regression. 

While Comaniciu and Meer noticed a connection between the MS algorithm and the bias of the kernel regression in one- 

dimensional space, they did not generalize this connection to multivariate kernel regression, instead focused on practical 

aspects of the MS algorithm [6] . In this study, we generalize this observation to multivariate kernel regression and show 

how the asymptotic bias for the multivariate Nadaraya–Watson estimator can be estimated using the MS algorithm with 

the widely used Gaussian kernel. To achieve this goal, we study the asymptotic bias of the multivariate Nadaraya–Watson 

kernel regression as the first step. In Theorem 1 , we give an estimate for the asymptotic bias of the multivariate Nadaraya–

Watson and use it for deriving a connection between the MS algorithm and the asymptotic bias of the Nadaraya–Watson 

kernel regression. We investigate the simple one-dimensional and general D -dimensional ( D > 1) cases separately and derive 

formulas for the asymptotic bias as a function of the MS algorithm. For the one-dimensional and the multivariate cases we 

show through the simulations that how the provided theoretical results can be used to find the bias for the estimated 

clean data, when a sequence of noisy observations are available. It is very important problem in noisy source quantization 

problem, since the output of the estimator will be used later for quantizer design. By computing the estimator’s bias, we 

will be able to judge about reliability of the estimated clean data, i.e., high bias means the estimated clean data is not 

accurate and we need to change the estimator’s parameters. 

In Sections 2 and 3 , we provide a brief review of the MS algorithm and multivariate kernel regression. In Section 4 , we 

derive the asymptotic bias for the Nadaraya–Watson estimator. The MS algorithm and its relation to kernel regression is 

discussed in Section 5 . The simulation results are given in Section 6 , where we illustrate the effectiveness of the theoretical 

results in the previous sections for estimating the asymptotic bias of the Nadaraya–Watson estimator. Section 7 is devoted 

to the concluding remarks. 

2. Mean shift algorithm 

Let x i ∈ R 

D , i = 1 , . . . , n denote a sequence of n independent and identically distributed random variables. In its most 

general form for an arbitrary point x , the D -dimensional kernel density estimate ˆ f using a kernel K H ( x ) is given by Silverman 

[34] 

ˆ f (x ) = 

1 

n 

n ∑ 

i =1 

K H (x − x i ) , (1) 

where K H (x ) = | H | −1 / 2 K(H 

−1 / 2 x ) , |.| denotes the determinant, and H ∈ R 

D ×D is a symmetric and positive definite matrix, 

which is called the bandwidth matrix. The kernel function K : R 

D → R is a real-valued non-negative function that integrates 

to one, i.e., 
∫ 
R D 

K(x ) dx = 1 . Radially symmetric kernels have been widely used for probability density estimation [6] and 

defined by K(x ) = c k,D k (‖ x ‖ 2 ) , where the constant c k , D is called normalization factor. 

The profile function of the kernel K is given by k : [0, ∞ ) → [0, ∞ ) that is a decreasing function with bounded integral, 

i.e., 
∫ ∞ 

0 k (x ) dx < ∞ [5] . Using the bandwidth matrix H and the profile k , the estimated probability density function changes 

to the following well-known form [8] 

ˆ f (x ) = 

c k,D | H | −1 / 2 

n 

n ∑ 

i =1 

k (‖ H 

−1 / 2 (x − x i ) ‖ 

2 ) . (2) 

1 For simplicity, the observed data points are considered as starting points. 
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