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a b s t r a c t

The locally twisted cube interconnection network has been recognized as an attractive
alternative to the hypercube network. Previously, the locally twisted cube has been shown
to contain a Hamiltonian cycle. The main contribution of this paper is to provide the nec-
essary and sufficient conditions for determining a characterization of permutations of link
dimensions constructing Hamiltonian cycles in a locally twisted cube. For those permuta-
tions, we propose a linear algorithm for finding a Hamiltonian cycle through a given edge.
As a result, we obtain a lower bound for the number of Hamiltonian cycles through a given
edge in an n-dimensional locally twisted cube.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The performance of a multiprocessor computer is significantly determined by its interconnection network. Hypercube
network is widely used in interconnection network topology due to its many attractive properties such as regularity, recur-
sive structure, node and edge symmetry, maximum connectivity, and effective routing and broadcasting algorithms [8]. The
locally twisted cube is a well-known variant of the classical hypercube proposed by Yang et al. [23] and has been attracting
much research interest in literatures since its proposal [10,11,22,19,23].

There are many parallel and distributed algorithms developed using such regular data structure as linear arrays, rings,
trees, and meshes. Their implementation on a hypercube-type interconnection network very often requires that a specific
topology be mapped into the network. Of those commonly used topologies, many efficient algorithms designed on cycles
for solving various algebraic problems and graph problems can be found in [8]. To implement a cycle-structure algorithm
on a multiprocessor computer, the processes of the parallel algorithm must be mapped to the nodes of the system such that
two adjacent processes in the cycle are mapped to two adjacent nodes of the network. Due to efficiently executing a parallel
program, the targeted interconnection network possesses a Hamiltonian cycle, that is, a cycle passes every node of the net-
work exactly once if the number of processes in the cycle-structure parallel algorithm equals the number of nodes of the
interconnection network.

The Hamiltonian cycle problem has attracted the interest of many researchers and many interesting results have been
proposed in last two decades [1–7,9,11–18,20–22,24]. In this paper, we study the problem of embedding a family of regularly
structured Hamiltonian cycles passing through a given edge in a locally twisted cube. We only consider a family of Hamil-
tonian cycles being systematically constructed, characterized by the permutation of link dimensions. We show that not
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every permutation can generate a Hamiltonian cycle as it would in the hypercube. Furthermore, the necessary and sufficient
conditions are given to determine a characterization of permutations constructing Hamiltonian cycles in a locally twisted
cube. For those permutations, we propose a linear algorithm for finding a Hamiltonian cycle through a given edge; besides,
we obtain a lower bound for the number of Hamiltonian cycles passing through a given edge in an n-dimensional locally
twisted cube.

The rest of this paper is organized as follows: In Section 2, we are given a formal description of the locally twisted cube
and define notations used in this paper, including notation for the permutation of link dimension and the reflected link label
sequence. Section 3 presents main results of this paper and proposes a linear desired algorithm. Section 4 gives some con-
cluding remarks.

2. Preliminaries

A topology of an interconnected network is conveniently represented by an undirected simple graph G ¼ ðV ; EÞ, where
VðGÞ and EðGÞ are the vertex set and the edge set of G respectively. For graph terminology and notation not defined here
we refer the reader to [8]. A walk in a graph is a finite sequence x : k0; e1; k1; e2; k2; . . . ; kk�1; ek; kk whose terms are alternately
vertices and edges so, for 1 6 i 6 k, the edge ei has ends ki�1 and ki, thus each edge ei is immediately preceded and succeeded
by the two vertices with which it is incident. In particular, a walk x is called a path if all internal vertices, ki for 1 6 i 6 k� 1,
of the walk x are distinct. Both vertices k0 and kk are called end-vertices of the path x. For simplicity, the path x is also
denoted by k0; k1; . . . ; kk. If k0 ¼ kk, then x is called a cycle. A cycle of length l is called a l-cycle. A path (respectively, cycle)
traversing each vertex of G exactly once is the Hamiltonian path (respectively, Hamiltonian cycle).

Let f0;1gn denote the set of all binary strings of length n. For two binary strings x and y 2 f0;1gn, let xþ y denote the
(bitwise modulo 2) sum of x and y. For every integer 0 6 i 6 n� 1, let bi denote the binary string xn�1xn�2 . . . x0 with
xi ¼ 1 and xj ¼ 0 for all j – i. For every integer 2 6 i 6 n� 1, let Bi denote the binary string xn�1xn�2 . . . x0 with xixi�1 ¼ 11
and xj ¼ 0 for all j – i; i� 1. In addition, let B1 ¼ b1 and B0 ¼ b0. As a result, Bi ¼ bi for i 6 1 and Bi ¼ bi þ bi�1 for i P 2,
moreover, bi þ bi ¼ Bi þ Bi ¼ 0n where 0n denote a string consisting of n 0 s.

Definition 1. [23] For n P 2, an n-dimensional locally twisted cube, denoted by LTQn, is defined recursively as follow:

(1) LTQ 2 is a graph consisting of four nodes labeled with 00; 01; 10, and 11 respectively, connected by four edges
ð00;01Þ; ð00;10Þ; ð01;11Þ and ð10;11Þ.

(2) For n P 3; LTQn is built from two disjoint copies of LTQ n�1 according to the following steps. Let 0LTQn�1 (respectively,
1LTQn�1Þ denote the graph obtained by prefixing the label of each node in one copy of LTQn�1 with 0 (respectively, 1).
Each node 0xn�2xn�3 . . . x0 in 0LTQ n�1 is connected to the node 1ðxn�2 þ x0Þxn�3 . . . x0 in 1LTQ n�1 by an edge.

Fig. 1 shows examples of locally twisted cubes, LTQ 3 and LTQ 4. Either x ¼ yþ bk or x ¼ yþ Bk for some 0 6 k 6 n� 1 if
vertices x and y of LTQ n are adjacent. Therefore, we call y as the k-neighbor of x and ðx; yÞ is labeled by k; besides, ðx; yÞ is
called to be type b if x ¼ yþ bk and type B if x ¼ yþ Bk.

A path in LTQ n might be specified by the source vertex and a sequence of labels detailing the edges to be traversed, for
example, the path in LTQ3 detailed as having the source vertex 000 and then following the edges labeled 0-2-1 (also denoted
as [0-2-1]) is actually the path 000; 001; 111; 101, also denoted as 000½0—2—1�101, where 001 ¼ 000þ b0; 111 ¼ 001þ B2,
and 101 ¼ 111þ B1. Therefore, the sequence L ¼ ½d0 � d1 � � � � � dm�1� is called an Link Label Sequence in LTQ n if two adjacent
labels are not identical where di 2 Zn; Zn ¼ f0;1; . . . ;n� 1g, for 0 6 i 6 m� 1. A walk, xðL;uÞ ¼ k0; k1; k2; . . . ; km, in LTQn can
be generated with respect to a given link label sequence L and a given vertex u as follows: k0 ¼ u, and kj is the dj�1-neighbor
of kj�1 in LTQn where 0 6 j 6 m. Thus, this walk xðL;uÞ is also represented as k0½L�km.
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Fig. 1. LTQ3 and LTQ 4.
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