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a b s t r a c t

Recently, low rank representation (LRR) has been successfully applied to explore subspace

segmentation of data. In this paper, we propose a nonconvex formulation to determine the

LRR from contaminated data. Unlike in traditional methods, which directly utilize the nu-

clear norm to approximate the rank function and penalize noise using the �2,1-norm, our

method introduces the Ky Fan p-k-norm and the �2,q-norm, to better approximate the rank

minimization problem and enhance the robustness against noise. An efficient algorithm is

derived for solving the novel objective function, and this is followed by a rigorous theoret-

ical proof of the convergence. Extensive experiments on face datasets clearly demonstrate

that the proposed methods are more robust to illumination variations, corruptions, and

occlusions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the subspace model has become an important research topic, with widespread applications in computer

vision and machine learning, such as face recognition [41,44], image segmentation [22,31], and motion segmentation [35,47].

Traditional principal component analysis (PCA) [18] and the recently developed robust principal component analysis (RPCA)

[3], matrix completion [19], and recovery [42] methods are reliant on the hypothesis that data samples are drawn from only

one single low rank subspace. However, many real world datasets reside on multiple subspaces, and the subspaces that data

samples belong to can be unknown. For example, for handwritten digits, each digit forms its own subspace in the feature

space. For human faces, the face of the same person under different conditions lies on the same subspace, and those of

different people are associated with different subspaces. This naturally leads to a more reasonable model, in which data

are approximately drawn from a union of subspaces. This model presents a more challenging problem concerning subspace

segmentation, with an aim of segmenting data samples into clusters, where each cluster corresponds to a subspace.

Over the past two decades, a number of subspace segmentation methods have been developed. According to the survey in

[39], the existing methods for subspace segmentation may be roughly categorized into four main families: algebraic meth-

ods [7,39], iterative methods [1,40], statistical methods [38,50], and spectral clustering-based methods [10,30,31]. Among

these, spectral clustering-based methods are particularly effective, and achieve competitive results. A fundamental problem
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regarding spectral clustering-based methods is that of how to determine an effective affinity graph from the observed data,

which represents the underlying data structures. According to Wright et al. [43], an informative affinity graph should ex-

hibit three characteristics: high discriminating power, low sparsity, and an adaptive neighborhood. Based on this insight,

many sparse representation (SR) based graph construction methods have been proposed [5,15,37,48]. However, these meth-

ods usually compute the sparsest representation of each point individually, and there is no global structure constraint of

data. Therefore, such methods may be ineffective in capturing the global structure of data. This characteristic can result in

the degradation of subspace segmentation when data are grossly corrupted.

Alongside recent progress in compressive sensing, a new concept of nuclear norm optimization has emerged in the field

of rank minimization, and has resulted in a number of interesting applications, such as low rank representation (LRR) [23,24]

from corruptions. LRR aims to decompose the original mixed data matrix X into XZ + E, where Z is the affinity matrix that

describes the correlations between different pairs of data, and E is the associated sparse noise. More precisely, to derive

the LRR of the input data matrix X LRR minimizes the rank of the matrix Z while reducing the �2,0-norm of E. Because LRR

involves the rank of the data matrix and the �2,0-norm minimization problem, it is NP-hard, and thus it is difficult to solve.

To address this issue, LRR employs the convex nuclear norm as a surrogate of the rank function, and the convex �2,1-norm

as a surrogate of the �2,0-norm. A fast implementation for the LRR method is presented in [21], using iteratively linearizing

methods.

The concept of manifolds [34] has been widely applied in statistical learning and pattern recognition. Related methods

have been applied to solve a variety of machine learning and computer vision problems, such as face synthesis [45], di-

mensionality reduction [34], motion trajectory [51], and sample selection [46]. The goal of LRR is to determine the lowest

rank representation of the data with an approximate dictionary. Motivated by the success of LRR and manifold learning,

the graph regularized LRR scheme [29] has been proposed, which involves imposing a local geometrical structure on the

traditional LRR. The smooth representation (SMR) model [16] has been proposed to explicitly explore grouping effects. It

has been demonstrated that these methods deliver a good general performance for a wide variety of problems, such as face

recognition, motion segmentation, and hyperspectral image destriping.

It is a well-known fact that the nuclear norm is the sum of all singular values of a matrix, while the matrix rank is

the number of nonzero singular values of a matrix in which each singular value contributes equally. The nuclear norm

minimization over-penalizes large singular values, resulting in a biased result. Hence, a solution obtained using the nuclear

norm may be suboptimal, because it is not a perfect approximation of the matrix rank. A similar phenomenon has been

observed for the convex �1-norm and nonconvex �0-norm for feature selection [2]. Thus, the convex method may not achieve

effective performances in real applications. In order to achieve a better approximation for the �0-norm, many nonconvex

surrogate functions of �0-norm have been proposed, including the �p-norm [12], smoothly clipped absolute deviation [11],

logarithm [13], and minimax concave penalty [49]. Some of these nonconvex penalties have been extended to approximate

the rank function, including the Schatten p-norm (0 < p < 1) used by Nie et al. [32], the truncated nuclear norm proposed

by Hu et al. [17], the log-sum heuristic used by Deng et al. [8], the Ky Fan 2-k-norm proposed by Doan and Vavasis [9], and

the joint Schatten p-norm and �2,q-norm regularized LRR problem proposed by Lu et al. [26].

In this paper, we propose a novel LRR algorithm, described as robust subspace segmentation via nonconvex LRR (NLRR),

which is designed to replace the rank of a matrix by the Ky Fan p-k-norm and penalize sparse noise via the �2,q-norm. We

investigate two widely employed nonconvex terms, and provide a proximal iteratively reweighted algorithm (PIRA) to solve

the nonconvex model. Furthermore, theoretical justifications are provided to prove that the proposed algorithm converges

to a stationary point. To the best of our knowledge, this is the first time that the nonconvex model has been generalized

to LRR for subspace segmentation, the goal of which is to recover the underlying low rank structure of subspaces in the

presence of illumination variations, noisy corruptions, and occlusions. Experimental results demonstrate that the nonconvex

model achieves a higher clustering accuracy than other state-of-the-art algorithms, and the objective function can achieve

convergence.

2. Related work

2.1. Low rank representation

We assume that X = [x1, x2, . . . , xn] ∈ R
m×n is an observed data matrix, whose columns consist of n data samples drawn

from a union of k subspaces {Si}k
i=1

. The LRR [24] can be formulated as the following minimization problem:

min
Z,E

rank(Z) + λ‖E‖2,0,

s.t. X = AZ + E, (1)

where λ is a parameter balancing the two components, and A is the dictionary that linearly spans the union of subspaces⋃k
i=1 Si. Z ∈ R

m×n has a low rank structure, which is assumed to be the authentic structure of the observed data, and E ∈
R

m×n is the noise matrix in the original data. rank(Z) denotes the rank of the matrix Z, and the �2,0-norm of matrix E is

defined as ‖E‖2,0 = ∑m
i=1 ‖∑n

j=1 e2
i j
‖0, where for a scalar a, ‖a‖0 = 1 if a �= 0 and ‖a‖0 = 0 if ‖a‖0 = 0.

Unfortunately, the above minimization problem is NP-hard in general, owing to the non-convexity and discontinuous

nature of rank(Z) and ‖E‖2,0. An effective strategy for approaching this problem is to relax the rank function to the convex
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