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a b s t r a c t 

In this work we discuss the problem of selecting suitable approximators from families of pa- 

rameterized elementary functions that are known to be dense in a Hilbert space of functions. 

We consider and analyze published procedures, both randomized and deterministic, for se- 

lecting elements from these families that have been shown to ensure the rate of convergence 

in L 2 norm of order O (1/ N ), where N is the number of elements. We show that both random- 

ized and deterministic procedures are successful if additional information about the families 

of functions to be approximated is provided. In the absence of such additional information one 

may observe exponential growth of the number of terms needed to approximate the function 

and/or extreme sensitivity of the outcome of the approximation to parameters. Implications 

of our analysis for applications of neural networks in modeling and control are illustrated with 

examples. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

The problem of efficient representation and modeling of data is important in many areas of science and engineering. A typical 

problem in this area involves constructing quantitative models (maps) of the type 

x 1 , x 2 , . . . , x d �→ f (x 1 , x 2 , . . . , x d ), 

where x 1 , x 2 , . . . , x d , x i ∈ R , i = 1 , . . . , d are variables and f : R 

d → R is an unknown functional relation between the variables. 

The total number, d , of variables, determining input data may be large, and physical models of such relations f ( ·) are not always 

available. 

In the absence of acceptably detailed prior knowledge of “true” models, f ( ·), a commonly used alternative is to express the 

function f ( ·) as a linear combination of known functions, ϕ i ( ·), ϕ : R 

d → R : 

f (x) � f N (x) = 

N ∑ 

i =1 

c i ϕ i (x), c i ∈ R . (1) 
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Numerous classes of functions ϕ i ( ·) in (1) have been proposed and analysed to date, starting from sin ( ·), cos ( ·) and polynomial 

functions featured in classical Fourier, Fejer, and Weierstrass results, wavelets [32,37] , and reaching out to linear combinations 

of sigmoids [7] 
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i =1 
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d , b i ∈ R , (2) 

radial basis functions [27] 
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and other general functions [10] that are often used in neural network literature [14] . Sometimes the values of parameters w i , b i 
may be pre-selected on the basis of additional prior knowledge, leaving only linear weights c i for training. If no prior information 

is available then both nonlinear ( w i and b i ) and linear ( c i ) parameters, or weights, are typically subject to training on data specific 

to the problem at hand (full network training). 

One special feature that makes full training of approximators (2), (3) particularly attractive is that in addition to their universal 

approximation capabilities [7,17,27] and their homogenous structure, they are reported to be efficient when the dimension d 

of input data is relatively high. In particular, if all parameters w i , c i , b i are allowed to vary, the order of convergence rate of the 

approximation error of a sufficiently smooth function f ( · ) ∈ C 0 [0 , 1] d as a function of N (the number of elements in the network) 

is shown to be independent of the input dimension d [4,19] . Furthermore, the achievable rate of convergence of the L 2 -norm of 

f ( · ) − f N ( · ) is shown to be O (1/ N 

1/2 ). This contrasts sharply with the rate O(d −1 /N 

1 /d ) corresponding to the worst-case estimate 

inherent to linear combinations (1) with ϕ i ( ·) given or (2), (3) with w i , b i fixed. In particular, it is shown in [4] that if only linear 

parameters of (2), (3) are adjusted the approximation error cannot be made smaller than Cd −1 /N 

1 /d , where C is independent on 

N , uniformly for functions satisfying the same smoothness constraints. 

Favorable independence of the order of convergence rates on the input dimension of the function to be approximated, how- 

ever, comes at a price. Construction of such efficient models of data involves a nonlinear optimization routine searching for the 

best possible values of w i , b i . The necessity to adjust parameters entering (2) nonlinearly, (3) restricts practical application of 

these models in a range of relevant problems (see e.g., [25,29,38,40] for an overview of potential issues). 

An alternative to adjustment of nonlinear parameters of (2), (3) has been proposed in [18,26,36] and further developed in 

[30,31] (see also earlier work by Rosenblatt [33] in which he discussed perceptrons with random weights). In these works the 

nonlinear parameters w i and b i are proposed to be set randomly at the initialization, rather than through training. The only 

trainable parameters are those which enter the network equation linearly, c i . Random selection of weights in the hidden lay- 

ers is supposed to generate a set of (basis) functions that is sufficiently rich to approximate a given function by mere linear 

combinations from this set. This crucially simplifies training in systems featuring such approximators, and renders an otherwise 

computationally complex nonlinear optimization problem into a much simpler linear one. Moreover, the rate of error conver- 

gence is argued to be O (1/ N 

1/2 ) [18,30,31] . 

This brings us to a paradoxical contradiction: on the one hand the reported convergence rate O (1/ N 

1/2 ) which a randomized 

approximator is supposed to achieve contradicts to the earlier worst-case estimate O(d −1 /N 

1 /d ) obtained in [4] . On the other 

hand numerous studies report successful application of such randomization ideas (see also comments [23] ) in a variety of intel- 

ligent control applications [15,21,22,24,35] as well as in machine learning (see e.g. [1,41] and references therein). The question, 

therefore, is if it is possible to resolve such an apparent controversy? Answering to this question is the main purpose of this 

contribution. 

The paper is organized as follows. We begin the analysis with Section 3 in which we review basic reasoning in [18] and 

compare these results with [4,19] . We show that, although these results may seem inconsistent, they have been derived for 

different performance criteria. The worst-case estimate in [4] is “crisp”, whereas the convergence rate in [18] is probabilistic. 

That is it involves a measure function with respect to which the rate O (1/ N 

1/2 ) is assured. Introduction of measure into the 

problem brings out a range of interesting consequences that is discussed and analyzed in Section 4 . There we approach data 

approximation problem as that of representation of a given vector by a linear combination of randomly chosen vectors in high 

dimensions. A simple logic suggests that if one takes m ≤ n random vectors in R 

n then it can be expected that with probability 

one these vectors will be linearly independent because the set of linearly dependent corteges { x 1 , . . . , x m 

} ( m ≤ n ) is a proper 

algebraic subset in the space of corteges (R 

n )m . We can select n random vectors, and with probability one it will be a basis. Every 

given data vector y can be represented by coordinates in this basis. If these n vectors are (accidentally) too close to dependence 

we can generate few more vectors that will enable us to represent the data vector y . We will show, however, that this simple 

and correct reasoning loses its credibility in high dimensions. We show that in an n -dimensional unit cube [ −1 , 1] n a randomly 

generated vector x will be almost orthogonal to a given data vector y (the angle between x and y will be close to π /2 with 

probability close to one). To compensate for this waist concentration effect [11–13] one needs to generate exponentially many 

random vectors. Typicality of such exponential growth is an inherent feature of high-dimensional data representation, including 

problems of data approximation and modeling. Moreover, for high-dimensional data representation the following two seemingly 

contradictory situations are typical in some sense: 

• with probability close to one linear combinations of n − k random vectors approximate any normalized vector with accuracy ε if 
k 	 n and no constraints on the values of coefficients in linear combinations are imposed (and this probability is one, if k = 0 ); 
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