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a b s t r a c t

In this paper, we present different opposition schemes for four reinforcement learning
methods: Q-learning, Q(k), Sarsa, and Sarsa(k) under assumptions that are reasonable for
many real-world problems where type-II opposites generally better reflect the nature of
the problem at hand. It appears that the aggregation of opposition-based schemes with
regular learning methods can significantly speed up the learning process, especially where
the number of observations is small or the state space is large. We verify the performance
of the proposed methods using two different applications: a grid-world problem and a sin-
gle water reservoir management problem.

Crown Copyright � 2014 Published by Elsevier Inc. All rights reserved.

1. Introduction

Reinforcement learning (RL) includes various learning techniques in which single or multiple agents can be trained
through interaction with stochastic or deterministic environments such that an optimal or near-optimal policy can be ex-
tracted. The most advantageous aspect of these techniques is their model-free basis, which makes them very attractive
and useful for real world and online training applications. However, to converge to a steady state [20], all states and actions
must be infinitely visited. This is usually not possible in large-scale applications. Opposition-based learning (OBL), first intro-
duced by Tizhoosh [17,18], might be an effective way to speed up the learning process [16,12,13,8]. The idea underlying this
methodology is to use the inherent oppositional relationships in the system to update the agent’s knowledge more fre-
quently. Where the state space is large, using function approximation (FA) or knowledge extraction techniques can be useful
in speeding up the learning process. We will also demonstrate how FA techniques can be useful in finding the opposite ac-
tion/state and how they can accelerate the learning process efficiently.

In this paper, two different applications are investigated to illustrate the benefit of the proposed methods. The first is a
grid-world problem, which is quite a popular problem in RL research, especially for navigation purposes [4]. The second is a
single water reservoir application, in which the target is to find a policy such that the predefined objective function is opti-
mized in a long- or short-term perspective. Reservoir management can be very complex because multiple reservoirs are
operated under highly stochastic conditions. Whereas in previous work (e.g., [8]) we introduced the notion of opposition
(only type-I opposites) in the Q-learning algorithm, in this paper we extend our work to TD(k) methods such as Q(k) and
Sarsa(k) and use type-II opposites.
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The remainder of this paper is organized as follows: Section 2 briefly overviews four different RL techniques. Section 3
reviews OBL versions of popular techniques in RL, specifically, Q-learning, Sarsa, Q(k), and Sarsa(k). Section 4 presents
and discusses our experimental results, and Section 5 concludes this paper.

2. Reinforcement learning techniques

The core ideas in RL were derived from the formulation of SDP, in which the transition probabilities (known as a
system model) were eliminated [3,5,20]. Every RL technique has four main components: action policy, reward signal,
action-value function, and (optionally) a model. The action policy is used to take actions that change the state of
the environment. It is a mapping from state to the decision (action), which is usually defined using a probabilistic fea-
ture (e.g., policy �-greedy with � as the probability of taking exploratory actions). The reward signal is the immediate
or delayed response of the environment to the action taken by the agent. The action-value function, which is defined
for every state-action pair, takes into account the accumulative reward from the starting point of learning. In other
words, the action-value function, in contrast to the reward function, specifies the gain of the system for a given
state-action pair after a long run. Indeed, the action-value functions can be calculated using the reward function accu-
mulated by a discount factor. They can also be available either analytically or through simulation. The model compo-
nent of RL determines the next state and the reward of the environment based on mathematical functions.

In the following subsections, the four RL techniques investigated in this paper, are explained in brief.

2.1. Q-learning

Q-learning, the most popular online RL technique, was first introduced by Watkins [20]. It is an effective way to find an
optimal or near-optimal closed-loop operation policy in a stochastic environment. The agent updates its knowledge after
each interaction with the environment (i.e., taking an action a in state st ¼ i) using the immediate reward, rtði; aÞ, it receives
and depending on the new situation, (stþ1 ¼ j), and takes another admissible action based on the new information acquired
(e.g., new action-value functions, Qtði; aÞ, and updated policy, p). The Q-learning that is used to update the action-value func-
tion pertinent to the current state-action pair, is generally formulated as follows, where the total reward has to be
maximized:

Qtði; aÞ :¼ ð1� aÞQ tði; aÞ þ a rtði; aÞ þ c max
b2AðjÞ

Q tþ1ðj; bÞ
� �

: ð1Þ

Here a is the learning parameter and AðjÞ is the set of admissible actions for state j. This set of admissible actions must be
specified before learning starts. In a stochastic environment, this set can be specified either optimistically or pessimistically
[7,8].

In Q-Learning, the updating process is performed by looking one step ahead, a process called single-step corrected trun-
cated return (CTR) [10]. Conversely, in the other RL techniques discussed below, more than one step ahead can be considered
for updating the action-value functions under some conditions.

2.2. Sarsa

In contrast to Q-learning, Sarsa is an on-policy RL technique, which means that the agent follows the same policy p for the
current state and all other states. In other words, instead of picking the greedy action for the next state in Eq. (1) to update
Qtði; aÞ, the action is determined based on the same policy used for taking action in the current state [15]. The general for-
mulation of Sarsa is as follows:

Qtði; aÞ :¼ ð1� aÞQ tði; aÞ þ a rtði; aÞ þ cQtþ1ðj; a0Þ
h i

; ð2Þ

where a and a0 are two actions chosen from policy p.

2.3. SarsaðkÞ

This RL method is an on-policy learning technique like Sarsa and uses an eligibility trace as a memory variable to update
more action-value functions in every iteration [15]. The parameter k and the discount factor c play a decaying role in the
eligibility trace to put more weight on those states that have been recently visited. The eligibility trace is a function of state
s and action a is incremented for the visited state and the action taken in the current iteration and updated with ck for all
state-action pairs after editing the action-value functions. This process of learning is performed iteratively using these eli-
gibility traces and continued until the convergence criteria are satisfied [15]. As we have seen in Sarsa, this technique uses
a quintuple comprising the taking of an action a in current state i ¼ s, the observing of reward r and next state j ¼ s0, and the
taking of another action a0. The initial values of action-value functions Qtði; aÞ, and eligibility traces eði; aÞ should be set to
zero at the start of learning. One iteration of the Sarsa method is demonstrated in Algorithm 1 [15].
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