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gorithms, such as the isometric feature mapping (Isomap) and GeoNLM, fail to work on
data that distribute on clusters or multiple manifolds. This limits their applications because
practical data sets generally distribute on multiple manifolds. In this paper, we propose a
new isometric multi-manifold learning method called Multi-manifold Proximity Embed-
ding (MPE) which can be efficiently optimized using the gradient descent method or the
self-organizing method. Compared with the previous methods, the proposed method has
two steps which can isometrically learn data distributed on several manifolds and is more

Pattern analysis accurate in preserving both the intra-manifold and the inter-manifold geodesic distances.
Multi-manifold embedding The effectiveness of the proposed method in recovering the nonlinear data structure and
clustering is demonstrated through experiments on both synthetically and real data sets.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Challenges, known as “the curse of dimensionality”, are usually confronted when scientists are conducting high dimen-
sional data analysis. Dimensionality reduction is a promising tool to circumvent this problem. Linear dimensionality reduc-
tion methods, such as Principal Component Analysis (PCA) and Multidimensional Scaling (MDS), often fail to discover the
nonlinear intrinsic structures of data. To address this issue, two Nonlinear Dimensionality Reduction (NLDR) methods, iso-
metric feature mapping (Isomap) [32] and Local Linear Embedding (LLE) [27], were proposed in 2000. Since then, many
important NLDR methods have been proposed (see, e.g. [4,31,38] for a good survey of many popular NLDR algorithms in-
cluding their Matlab codes). NLDR or manifold learning has now become a fast growing research activity and proved very
useful in many fields and applications, such as image retrieval [15,36], video annotation [35], clustering [10,39,42], and data
visualization [3,12,21,26,34].

Most of the manifold learning algorithms implicitly assume that data points uniformly lie on a single manifold. How-
ever, in many practical applications, data points always lie on multiple clusters or multiple manifolds. For instance, in face
recognition the face images of each person form its own manifold in the feature space. In motion segmentation in com-
puter vision, moving objects trace different low-dimensional trajectories. In video sequence analysis, frames of different
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video shots form different trajectories in the low-dimensional space. Therefore, for many tasks such as multi-class recog-
nition and data visualization, most manifold learning algorithms can only learn each class separately and fail to preserve
the inter-class relationship, which restricts their application areas. To overcome this difficulty, many multi-manifold learning
algorithms have been proposed, such as linear multiple learning algorithms for data classification [11,16,20], multi-manifold
learning algorithms for video analysis [18,19] and for dynamic visual tracking [3,24,40], and multi-class data analysis algo-
rithms [17,37,49]. These works have shown the advantage of multi-manifold learning algorithms over the previous manifold
learning algorithms in practical applications. However, it is still a challenging problem to isometrically learn the intrinsic
nonlinear data structure for multi-manifold data since it is difficult to faithfully preserve the intra- and inter-manifold dis-
tances simultaneously.

In this paper, we propose a Multi-manifold Proximity Embedding (MPE) algorithm to learn multi-manifold data in the
unsupervised case. First, we propose two efficient Isometric Proximity Embedding (IPE) algorithms for data distributing
on a single manifold, based on the gradient descent method and the self-organizing method. Then, a general framework is
introduced for Isometric Multi-Manifold Learning (IMML), based on which the MPE algorithm is proposed for multi-manifold
data. MPE is an efficient extension of IPE to multi-manifold data. The proposed MPE has two steps to realize IMML. In the
first step, it discovers the data manifolds and then reduce the dimensionality of each manifold separately. Meanwhile, a
skeleton representing the global structure of the whole data set is built and then mapped into the low-dimensional space.
In the second step, by referring to the low-dimensional representation of the skeleton, the embedding of each manifold is
relocated into a global coordinate system. Compared with the previous unsupervised IMML algorithms, our MPE algorithm
is not only computationally efficient but also accurately preserves both the intra-manifold and the inter-manifold geodesic
distances and therefore is more effective in recovering the nonlinear data structures and clustering.

This paper extends and improves upon our previous work [6] substantially, as indicated below.

(1) A general framework for IMML is introduced in this paper. The framework not only provides the motivation and
explanations of the previous methods but can also be regarded as a general platform to design new IMML methods,
such as the MPE method in this paper.

(2) With the help of the framework, the MPE method is presented in this paper which is able to preserve the geodesic
distance more accurately than our previous method in [6]. Further, the MPE method is based on two efficient opti-
mization algorithms: the gradient descent method and the self-organizing method, so it is computationally efficient
and also applicable to large-scale data sets.

(3) More experiments are conducted on both synthetic and image data sets. In particular, clustering results on low-
dimensional embeddings of image data are provided to show the effectiveness of the proposed method.

The rest of the paper is organized as follows. In Section 2, previous IMML algorithms are briefly reviewed. In Section 3, a
general framework is first introduced for designing IMML algorithms and then used to propose a new IMML algorithm, that
is, the MPE algorithm. In Section 4, the effectiveness of the proposed MPE method is demonstrated through experiments on
both synthetical and image data sets. Comparisons of our MPE algorithm with several previous IMML algorithms are also
made. Concluding remarks are provided in Section 5.

2. Isometric manifold learning and related IMML algorithms

Isomap was first introduced in [32] and is based on the classical MDS method. Its main idea is to preserve the geodesic
distance on the data manifold in finding the low-dimensional embedding manifold. Another isometric manifold learning
method, namely the GeoNLM [48], has been shown more robust to short circuit edges than Isomap. In these two methods,
the geodesic distance between two data points is approximated by the shortest path on a constructed graph using Dijkstra’s
or Floyd-Warshall’s algorithm. If the data points distribute on several clusters or manifolds, neither the k-NN method nor
the e-NN method can construct a good quality neighborhood graph. Therefore, both Isomap and GeoNLM fail to work on
this kind of data, which limits their applications. Much work has been done to extend the two methods to multi-manifold
learning, which will be briefly reviewed as follows.

Wu and Chan [41] proposed a split-augment approach to construct a neighborhood graph. Their method can be regarded
as a variation of the k-NN method, which is simple to implement and has the same computational complexity as the k-NN
method. However, since there is only one edge connecting every two graph components, the geodesics across the compo-
nents are poorly approximated.

Yang [44-47] introduced four methods to construct a connected neighborhood graph: the k minimum spanning trees
(k-MST) method [44], the minimum-k-spanning trees (Min-k-ST) method [45], the k-edge-connected (k-EC) method [46]
and the k-vertices-connected (k-VC) method [47]. These methods have the following advantages over the k-NN method. First,
the local neighborhood relationship is affected by the global distribution of the data points. This is beneficial for adaptively
preserving the global geometric metrics. Secondly, these methods can guarantee that the constructed neighborhood graph
is totally connected. Thirdly, compared with the k-NN method using the same neighborhood size k, the neighborhood graph
constructed by Yang’s methods contains more edges. These properties ensure the good quality of the neighborhood graphs.
However, these methods are computationally expensive (see [50,51]).
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