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a b s t r a c t

The arrangement graph An;k is a well-known interconnection network. Day and Tripathi
proved that An;k is pancyclic for n� k P 2. In this paper, we improve this result, and we
demonstrate that An;k is also pancyclic even if it has no more than ðkðn� kÞ � 2Þ faulty
edges for n� k P 2. Our result is optimal concerning the edge fault-tolerance.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The interconnection network is an important research area for parallel and distributed computer systems. Usually, the
topology of a network can be represented as a graph in which the vertices represent processors and the edges represent
the communication links.

The star graph, which was proposed by Akers et al. [1], is a well-known interconnection network. As a generalization of
the star graph, Day and Tripathi [5] proposed the arrangement graph. For a positive integer s, let hsi denote the set
f1;2; . . . ; sg. Given two positive integers n and k with n > k P 1, the ðn; kÞ-arrangement graph An;k is the graph that has
the vertex set VðAn;kÞ ¼ fu ¼ u1u2 . . . ukjui 2 hni;ui – uj if i – jg and the edge set EðAn;kÞ ¼ fðp; qÞjp; q 2 VðAn;kÞ; and
p; q differ in exactly one position}. From the definition, we know that An;k is a regular graph of degree kðn� kÞ with n!

ðn�kÞ!

vertices, An;1 is isomorphic to the complete graph Kn, and An;n�1 is isomorphic to the n-dimensional star graph. Moreover,
An;k is vertex-transitive and edge-transitive [5]. Fig. 1 shows the arrangement graph A4;2.

For i 2 hni; j 2 hki, suppose that Aðj:iÞn;k denotes the subgraph of An;k that is induced by V Aðj:iÞn;k

� �
¼ fp jp ¼ p1p2 . . . pk and

pj ¼ ig. Obviously, fVðAðj:iÞn;k Þ j1 6 i 6 ng forms a partition of VðAn;kÞ and each Aðj:iÞn;k is isomorphic to An�1;k�1. Then An;k can be

recursively constructed from n copies of An�1;k�1 and every two copies have ðn�2Þ!
ðn�k�1Þ! edges between them. We follow [4] for

graph-theoretical terminologies and notations. For two paths P ¼ hu0;u1; . . . ;umi and P0 ¼ hum;umþ1; . . . ;uni; P þ P0 denote
the path hu0;u1; . . . ;um;umþ1; . . . ;uni.
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In interconnection networks, the problem of simulating one network by another is modeled as a graph-embedding prob-
lem. There are several reasons why such an embedding is important [24]. For example, the execution of an efficient algo-
rithm requires certain topological structures. Thus, it is desired to provide logically a specific topological structure
throughout the execution of the algorithm in the network design.

The cycle embedding problem is one of the most popular embedding problems. This problem is to find a cycle of given
length in a graph. A graph G is Hamiltonian if it has a cycle of length jVðGÞj. If there exists a Hamiltonian path (a path of
length jVðGÞj � 1) between any two vertices of G, then the graph G is said to be Hamiltonian connected. A graph G is pan-
cyclic if it has cycles of each length from g to jVðGÞj where g is the length of a shortest cycle of G. Let dGðu;vÞ denote the
length of a shortest path between vertices u and v in G. A graph G is panconnected if for any two vertices x; y in G, there
exist paths between x and y of each length from dGðx; yÞ to jVðGÞj � 1. The pancyclicity is an important metric when
embedding cycles of any length into the topology of a network. A large amount of related work has appeared in the
literature [2,3,6,13–15,23].

Because some components in a graph could fail sometimes, it is more practical to study graphs with faults. A graph G is
k-fault-tolerant pancyclic (resp. Hamiltonian, Hamiltonian connected, panconnected) if G� F remains pancyclic (resp. Ham-
iltonian, Hamiltonian connected, panconnected) for F # VðGÞ [ EðGÞ; jFj 6 k. A graph G is k-edge-fault-tolerant pancyclic
(resp. Hamiltonian, Hamiltonian connected, panconnected) if G� F remains pancyclic (resp. Hamiltonian, Hamiltonian con-
nected, panconnected) for F # EðGÞ; jFj 6 k. The fault-tolerant pancyclicity has been investigated widely. There is a substan-
tial amount of related literature [7–12,15,16,19–22,25].

For n� k ¼ 1, the cycle embedding problems of the arrangement graph An;k, which is a star graph, have been discussed in
[7,13,15,21,25]. For n� k P 2, Day and Tripathi [6] proved that An;k is pancyclic. Teng et al. [18] proved that An;k is pancon-
nected. Concerning fault tolerance, Hsieh et al. [10] studied the existence of Hamiltonian cycles in faulty arrangement
graphs. Hsu et al. [12] proved that An;k is ðkðn� kÞ � 2Þ-fault-tolerant Hamiltonian if n� k P 2. Lo and Chen [17] proved that
An;k is ðkðn� kÞ � 2Þ-edge-fault-tolerant Hamiltonian connected if all faulty edges are not adjacent to the same vertex. In this
paper, we prove that An;k is ðkðn� kÞ � 2Þ-edge-fault-tolerant pancyclic if n� k P 2. If there are kðn� kÞ � 1 faulty edges and
all of them are adjacent to the same vertex in An;k, then An;k � F is not Hamiltonian. This finding demonstrates that our result
is optimal with respect to edge fault-tolerance.

2. Some properties of the arrangement graphs

First, we give some of the known results about the arrangement graph.

Theorem 1 (Day and Tripathi [6]). The arrangement graph An;k is pancyclic for n� k P 2. h

Theorem 2 (Teng et al. [18]). The arrangement graph An;k is panconnected for n� k P 2. h

Theorem 3 (Hsu et al. [12]). The arrangement graph An;k is ðkðn� kÞ � 2Þ-fault-tolerant Hamiltonian, and ðkðn� kÞ � 3Þ-fault-
tolerant Hamiltonian-connected for n� k P 2. h

Denote El¼i;j ¼ ðu;vÞ 2 EðAn;kÞ : u 2 V Aðl:iÞn;k

� �
;v 2 V Aðl:jÞn;k

� �n o
. Then, jEl¼i;jj ¼ ðn�2Þ!

ðn�k�1Þ!. Specifically, we use Ai
n;k to denote Aðk:iÞ

n;k

and Ei;j to denote Ek¼i;j in An;k. For a subset I of hni, AI
n;k denotes the subgraph of An;k that is induced by

S
i2IVðA

i
n;kÞ.

Hsu, Li, Tan and Hsu proved the theorem below.
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Fig. 1. The arrangement graph A4;2.
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