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a b s t r a c t

Bayesian learning provides a firm theoretical basis of the design and exploitation of
algorithms in data-streams processing (preprocessing, change detection, hypothesis test-
ing, clustering, etc.). Primarily, it relies on a recursive parameter estimation of a firmly
bounded complexity. As a rule, it has to approximate the exact posterior probability density
(pd), which comprises unreduced information about the estimated parameter. In the recur-
sive treatment of the data stream, the latest approximate pd is usually updated using the
treated parametric model and the newest data and then approximated. The fact that
approximation errors may accumulate over time course is mostly neglected in the estima-
tor design and, at most, checked ex post. The paper inspects the estimator design with
respect to the error accumulation and concludes that a sort of forgetting (pd flattening)
is an indispensable part of a reliable approximate recursive estimation. The conclusion
results from a Bayesian problem formulation complemented by the minimum Kullback–
Leibler divergence principle. Claims of the paper are supported by a straightforward anal-
ysis, by elaboration of the proposed estimator to widely applicable parametric models and
illustrated numerically.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Data-streams processing [2,19] faces many challenges connected with data preprocessing, change detection, hypothesis
testing, clustering, prediction, etc. These classical statistical topics [12] are instances of dynamic decision making under
uncertainty and incomplete knowledge well-covered by Bayesian paradigm [7]. Its routine use is inhibited by the fact that
the available formal solutions neglect the inherent need for the recursive (sequential) treatment. The paper counteracts this
neglect with respect to parameter estimation, which forms the core of solutions of the mentioned problems.

The recursive estimation is rarely feasible without an information loss. Mostly, each data updating of estimates only
approximates the lossless estimation [9]. Without a care, approximation errors may accumulate to the extent damaging
the estimation quality. Stochastic approximations [5] dominate the analysis inspecting whether a specific estimator suffers
from this problem or not. The design of estimators avoiding the accumulation is less developed and mostly relies on stochas-
tic stability theory [28] limited by a non-trivial choice of an appropriate Lyapunov function.

Both the analysis and design predominantly focus on a point estimation. However, the recursive estimation serving to
dynamic decision making is to provide a fuller information about the estimated parameter. The Bayesian estimation provides
its most complete expression, namely, the posterior probability density of the unknown parameter (pd, Radon–Nikodým
derivative with respect to a dominating measure, denoted d�, [33]). This explains the focus of the paper on the Bayesian
estimation.
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The inspection of the approximation-errors influence has been neglected within the Bayesian framework. Papers [20–24]
represent a significant exception. They characterise the Bayesian approximate recursive estimation without an approxima-
tion-errors accumulation. They show that the accumulation is completely avoided if and only if a finite collection of fixed
linear functionals acting on logarithm of the posterior pds are used as a (non-sufficient) statistic. The values of this statistic
can be recursively updated by data and serve as information-bearing constraints for the design of the approximate posterior
pds. This favourable class of statistics is, however, too narrow and excludes too many cases of practical interest. Thus, it is
desirable to inspect an approximate recursive Bayesian estimation allowing non-zero errors caused by the recursive treat-
ment while counteracting their accumulation. The paper proposes such an estimator. The proposed solution respects that the
recursively stored information about the exact posterior pd (quantifying fully the available information) is inevitably partial.
Then, the minimum Kullback–Leibler divergence (KLD, [27]) principle [17,35] is to be used for its completion. Under general
conditions, the completion adds forgetting to a common ‘‘naive’’ approximate recursive estimation, which takes the approx-
imate posterior pd as an exact prior pd for the data updating.

The paper primarily aims to attract the research attention to the problem practically faced by any approximate recursive
learning. This determines the relatively abstract presentation way. The excellent anonymous reviewers have served as an
encouraging sample of readers who confirmed the presentation efficiency. The suppression of multitude features and tech-
nical details of an overall data-streams handling has allowed them to grasp well the essence of the addressed problem and of
its solution. The focus on the problem core also determines the level of proofs’ details. The paper is not fully self-containing
in this respect and relies on availability of the complementary information in referred papers. Technically, Section 2 formu-
lates the addressed problem. Section 3 provides its solution and indicates that the accumulation of approximation errors is
counteracted. It also guides how to choose the decisive data-dependent forgetting factor. Section 4 specialises the solution to
an important class of parametric models and the corresponding feasible approximate posterior pds. An example illustrating
general results is in Section 5. Section 6 contains closing remarks.

2. Addressed problem

A parametric model mt ¼ mtðHÞ describes a (modelled) output yt 2 yH1 stimulated by an (external) input ut 2 uH at
discrete-time moments labelled by t 2 tH ¼ f1;2; . . .g. Data records dt ¼ ðyt ;utÞ are processed sequentially. The parametric
model mt is a pd of the output yt conditioned on the prior information, on the current input ut , on the past data records
dt�1; . . . ; d1, and on an unknown parameter H 2 HH. The parameter is also unknown to the input generator. It means that ut

and H are independent when conditioned on dt�1; . . . ;d1, i.e. natural conditions of control [32] are met.
Full information about the parameter H at time t � 1 is expressed by the exact posterior pd ft�1 ¼ ft�1ðHÞ ¼

fðHjut ; dt�1; . . . ; d1Þ ¼ fðHjdt�1; . . . ; d1Þ (quantifying fully the available information). The Bayes rule Bt updates this pd by
the data record dt . The exact posterior pd evolves as follows

ft ¼ Bt ½ft�1� () ftðHÞ ¼
mtðHÞft�1ðHÞ

gtðytÞ
/ mtðHÞft�1ðHÞ; 8 H 2 HH; ð1Þ

gtðytÞ ¼
Z

HH

mtðHÞft�1ðHÞdH; ð2Þ

where / denotes equality up to normalisation. The predictive pd gtðyÞ is determined by (2) with the fixed condition
ut; dt�1; . . . ; d1 and an arbitrary output y 2 yH. The parametric model in (1) is treated as likelihood, i.e. as a function of H
for a fixed inserted data dt ; dt�1; . . . ; d1. The recursion (1) is initiated by a designer-supplied prior pd f0 ¼ f0ðHÞ describing
the available prior information. The updating (1) requires knowledge of the pd ft�1 and information that allows the evalu-
ation of the likelihood mtðHÞ; 8 H 2 HH. A j-dimensional statistic wt (called regression vector, j <1), which can be up-
dated recursively, is assumed to comprise such an information.

The inspected problem arises when the exact posterior pd ft ¼ ftðHÞ is too complex and has to be replaced by an approx-
imate pd pt ¼ ptðHÞ. The pd pt is a projection of ft on a designer-selected set of feasible pds pH. In [8], it was shown that the pd
Opt 2 pH approximating optimally the exact posterior pd ft is to minimise the KLD Dðft jjpÞ [27].2

Opt 2 arg min
p2pH

DðftjjpÞ ¼ arg min
p2pH

Z
HH

ftðHÞ ln
ftðHÞ
pðHÞ

� �
dH: ð3Þ

Since a direct use of (3) with the exact pd ft evolving according to (1) is prevented by the problem definition, the recursive
evaluation without an additional error should evolve the optimal pd Opt (3), i.e. to update recursively the optimal approxima-
tion Opt�1 of the exact posterior pd ft�1

Opt�1;mt
� �

! Opt : ð4Þ

1 xH denotes a set of xs. It is either a non-empty subset of a finite-dimensional real space or a subset of pds acting on the set of unknown parameters. The
scalar-valued output is considered without a loss of generality as the multivariate case can always be treated entry-wise [16].

2 The KLD, defined in (3) by the integral expression after equality, is conditioned on the data dt ; . . . ; d1. The adopted simplified notation does not mark the
condition explicitly. The KLD has many properties of distance between pds in its argument like non-negativity, equality to zero for almost surely equal
arguments, etc. It is, however, asymmetric and does not meet triangle inequality.
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