
Information Sciences 334–335 (2016) 1–16

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Multi-objective optimisation for regression testing

Wei Zheng a,∗, Robert M. Hierons b, Miqing Li b, XiaoHui Liu b, Veronica Vinciotti b

a School of Software and Microelectronics, Northwestern Polytechnical University, Yantan 127# the west road of you yixi’an, Shanxi 710072,

China
b School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB7 7NU, United Kingdom

a r t i c l e i n f o

Article history:

Received 14 March 2015

Revised 15 September 2015

Accepted 19 November 2015

Available online 2 December 2015

Keywords:

Software engineering

Regression testing

Test suite minimisation

Multi-objective search

a b s t r a c t

Regression testing is the process of retesting a system after it or its environment has changed.

Many techniques aim to find the cheapest subset of the regression test suite that achieves

full coverage. More recently, it has been observed that the tester might want to have a

range of solutions providing different trade-offs between cost and one or more forms of cov-

erage, this being a multi-objective optimisation problem. This paper further develops the

multi-objective agenda by adapting a decomposition-based multi-objective evolutionary al-

gorithm (MOEA/D). Experiments evaluated four approaches: a classic greedy algorithm; non-

dominated sorting genetic algorithm II (NSGA-II); MOEA/D with a fixed value for a parameter

c; and MOEA/D in which tuning was used to choose the value of c. These used six programs

from the SIR repository and one larger program, VoidAuth. In all of the experiments MOEA/D

with tuning was the most effective technique. The relative performance of the other tech-

niques varied, although MOEA/D with fixed c outperformed NSGA-II on the larger programs

(Space and VoidAuth).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software testing is one of the main verification and validation methods used in software development. Regression testing

occurs whenever the system under test (SUT) or its environment changes, with the regression testing process involving the SUT

being tested with the current test suite T or some subset of this (possibly with additional test cases for new code). Although

there are many tools that reduce the cost of regression testing by re-applying the test suite T, regression testing can be a time

consuming and expensive process. This is the case if the test suite is large, there is some manual element in testing, or test

execution takes up significant resources. It has been found that there are situations in which regression testing takes weeks to

run [7]. In addition, many systems are now developed in a continuous manner, with builds being frequently tested, and in such

situations the time taken by regression testing can be a significant issue. There has thus been considerable interest in methods

that reduce the cost of regression testing (see, for example, [1–3,7,10,11,13,17,29,32,33,37,41]). A good overview of this work can

be found in a recent survey [42].

A natural approach, to reducing the cost of regression testing, is to select a subset T′ of the test suite T, with methods that

do this being called test suite minimisation methods [42]. The aim of such methods is to choose an effective but small subset

and many approaches have been devised [1–3,10,11,13,17,41]. In the absence of fault information, it is normal to use some form

of coverage as a proxy for effectiveness. For example, we might want a small subset T′ where the percentage of statements

∗ Corresponding author. Tel.: +86 13991976695.

E-mail address: zhengweizr@gmail.com, wzheng@nwpu.edu.cn (W. Zheng).

http://dx.doi.org/10.1016/j.ins.2015.11.027

0020-0255/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2015.11.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2015.11.027&domain=pdf
mailto:zhengweizr@gmail.com
mailto:wzheng@nwpu.edu.cn
http://dx.doi.org/10.1016/j.ins.2015.11.027


2 W. Zheng et al. / Information Sciences 334–335 (2016) 1–16

executed in testing (statement coverage) is high. The problem is then usually seen as either maximising coverage for a given

test budget or minimising cost for a given coverage, with initial work on this topic devising greedy algorithms (see, for example,

[2,3,11]).

The previously mentioned approaches fix one property (cost or coverage) and then aim to optimise the other property. It

has been observed that instead we might treat this problem as a multi-objective optimisation problem: we attempt to optimise

two or more properties (such as cost and coverage) at the same time [10]. In multi-objective optimisation it is normal to place a

partial order on solutions by saying that solution xPareto dominates solution y if x is superior to y for at least one objective and

is at least as good as y for all objectives. For a given problem, the Pareto set is the set of solutions that are not Pareto dominated.

This Pareto set provides a range of trade-offs between the properties optimised: the tester can then choose from these solutions.

While typically it is not feasible to produce the Pareto set for a problem, optimisation algorithms might return an approximation

to the Pareto set. Yoo and Harman implemented a multi-objective approach, applying a greedy algorithm and two versions

of non-dominated sorting genetic algorithm II (NSGA-II) [41]. The approaches were evaluated on Space and four programs from

the Siemens suite. Interestingly, while the versions of NSGA-II outperformed the greedy algorithm on the programs from the

Siemens suite, the greedy approach was superior for Space [41]. Harman has also identified many different factors that might be

considered in the test suite minimisation problem [10].

Yoo and Harman [41] appear to be the first researchers to apply a multi-objective optimisation approach to the test suite

minimisation problem. This was an important step that led to valuable results and insights, but the work (naturally) had a

number of limitations. One limitation was that while the multi-objective evolutionary algorithm used (NSGA-II) is known to

perform well on many problems, there is the potential to apply more specialised approaches. In the evaluation, the main approach

used to compare algorithms operated as follows: take the union of the non-dominated solutions produced by the algorithms,

form a new set P of non-dominated solutions from these, and for an algorithm A determine how many of its solutions are not

Pareto dominated by solutions in P. The authors also compared the sizes of the sets of non-dominated solutions returned by the

algorithms, arguing that an algorithm that returns many solutions provides the tester with more options. While this approach

is sensible, the evolutionary optimisation community has developed other approaches. Finally, the authors considered two and

three objective problems.

In this paper we aim to significantly develop the multi-objective agenda pioneered by Yoo and Harman in three major ways,

with the following contributions. Firstly a ‘modern’ evolutionary algorithm decomposition-based multi-objective evolutionary al-

gorithm (MOEA/D) [43], not previously used, has been utilised to overcome some of the limitations as stated above. Secondly, the

Hypervolume (HV) [49] of a solution has been used in the evaluation as it has a number of important benefits and is widely used

in comparing the performance of multi-objective and many-objective algorithms. Thirdly, we have extended a multi-objective

solution as proposed in Yoo and Harman’s paper to a many-objective one as this would enable one to consider the testing of other

important types of software. It transpired that it was necessary to adapt MOEA/D and in doing so we introduced a parameter c

used in the normalisation. Some initial runs were performed and in these a value of c = 0.3 was found to be reasonably effective.

This led to two versions of MOEA/D being used in the experiments: one in which we used this fixed value of c and one in which

the value of c was chosen for each experiment (‘variable c’). We also explored problems with two to four objectives; Yoo and

Harman considered two and three objective problems. One might expect the nature of the optimisation problem to change as

the number of objectives increases since, for example, fewer pairs of solutions will be related (under the relation that one domi-

nates the other). In addition, our seven experimental subjects included an additional real-world program; one that implements

a web-service.

Yoo and Harman considered two and three objective problems, but we have chosen several combinations of objectives

in this paper. The most basic included two objectives only (cost and statement coverage) and might be seen as corre-

sponding to the development of ‘normal’ software. The three objective case added in branch coverage. Branch coverage is

required in a number of areas including automotive software (see, for example, [39]). For four objectives we used cost,

statement coverage, branch coverage, and modified condition/decision coverage (required for safety critical components in

avionics software [34]) so this might be seen as corresponding to the testing of critical software. In this way we have

moved from a multi-objective optimisation problem to a many-objective one, allowing the testing of additional types of

software.

In this paper, we compare four optimisation algorithms: a greedy algorithm, NSGA-II, and MOEA/D (with a fixed value of c or

variable c). We used five smaller experimental subjects plus Space from the software-artifact infrastructure repository (SIR) and

one larger real world system, VoidAuth, that implements the main processes of the Universal Payment Gateway (UPG) service. In

all cases the experiments found MOEA/D with variable c to be the most effective technique, with the differences being statistically

significant. The relative performance of the other methods varied, although the greedy algorithm was worst for the smaller SIR

programs. Similar to Yoo and Harman, we found that the greedy algorithm outperformed NSGA-II on Space but, interestingly,

both variants of MOEA/D performed better than the greedy algorithm. For VoidAuth the greedy algorithm outperformed NSGA-II

for the two and three objective problems and outperformed MOEA/D with fixed c for the three objective problem. The relative

performance of NSGA-II and MOEA/D with fixed c varied for the SIR programs, with neither being consistently better. However,

in all cases MOEA/D with fixed c outperformed NSGA-II for VoidAuth. We also considered a specific scenario, where the tester

decides to use a test suite that provides full coverage for every metric in the optimisation process. In every experiment MOEA/D

with variable c returned the smallest test suite.

The paper is structured as follows. Section 2 provides an overview of previous work on test suite minimisation for software

regression testing and Section 3 reviews approaches to evolutionary multi-objective optimisation. Section 4 explains how we



Download English Version:

https://daneshyari.com/en/article/392663

Download Persian Version:

https://daneshyari.com/article/392663

Daneshyari.com

https://daneshyari.com/en/article/392663
https://daneshyari.com/article/392663
https://daneshyari.com

