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a b s t r a c t

We present a new method for color image reduction based on the concept of fuzzy trans-
form. Any image in a single band can be considered as a fuzzy matrix which is subdivided
into submatrices called blocks. Each block is compressed with various_compression rates
by means of a fuzzy transform in two variables. We compare our method with recent three
algorithms due to G. Beliakov, H. Bustince and D. Paternain based on the minimizing
penalty functions defined over a discrete lattice. The quality of the reduced image is mea-
sured by the Mean Square Error (MSE) and Penalty function (PEN) obtained by comparing
both magnified and original images. We also point out a threshold of the compression rate
beyond which the MSE follows a linear trend and the corresponding loss of information is
still acceptable.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A fuzzy transform (shortly, F-transform) [16,17] is an operator which transforms a continuous function into a n-dimen-
sional vector. Applications of the F-transforms were made in data analysis [7,8,14], image analysis [3–6,9,17–19] and com-
parisons with the fuzzy relation equations method and JPEG appear in [10–13]. In [1] three new color images reduction
algorithms are presented and based on the optimizing penalty functions [2] defined over discrete product lattices. Further-
more the authors in [1] proved that these algorithms are better than other reduction algorithms based on appropriate re-
sampling and F-transforms. Here we show that our algorithm based on decomposition of blocks reduced via F-transforms
[3–5] gives better results than those obtained with the algorithms from [1]. In other words, as in [3–5], any image is divided
into submatrices of equal dimensions, called blocks. Every block is reduced under a specific compression rate with a F-trans-
form and reconstructed via a simple algorithm. The re-composition of these decompressed and magnified blocks gives an
overall magnified image comparable with the original image. From the point of view of Granular Computing [15], we can
also say that these blocks are the information granules which are then re-composed in accordance to some suitable criteria
for giving the overall final information.

The quality of the reduced image is measured by the Mean Square Error (MSE) and the error based on Penalty function
(PEN) obtained by comparing both magnified and original images. In addition, we develop a process to establish a compres-
sion rate threshold, through the analysis of the trend of the MSE with respect to the compression rates. Beyond this threshold
the MSE follows a linear trend and the corresponding loss of information, due to reduction, is still acceptable. In Sections 2
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and 3 we provide the definition of the F-transform in one and two variables, respectively. In Section 4 we present our reduc-
tion method. In Section 5 we present the results of our experimental study. Section 6 is conclusive.

2. F-transforms in one variable

Following the definitions and notations of [16], let [a,b] be a closed interval, n P 2, and x1, x2, . . . , xn be points of [a,b],
called nodes, such that x1 ¼ a < x2 < � � � < xn ¼ b. We say that an assigned family of fuzzy sets A1, . . . , An: [a,b] ? [0,1] is
a fuzzy partition of [a,b] if the following conditions hold:

(1) AiðxiÞ ¼ 1 for every i ¼ 1;2; . . . ;n;
(2) AiðxÞ ¼ 0 if x R ðxi�1; xiþ1Þ, where we assume x0 ¼ x1 ¼ a and xnþ1 ¼ xn ¼ b by convenience of presentation;
(3) Ai(x) is a continuous function on [a,b];
(4) Ai(x) strictly increases on [xi�1, xi] for i ¼ 2; . . . ;n and strictly decreases on [xi, xi+1] for i = 1, . . . , n � 1;
(5) 8x 2 ½a; b�;

Pn
1AiðxÞ ¼ 1

The fuzzy sets {A1(x), . . . , An(x)} are called basic functions. Moreover, we say that they form an uniform fuzzy partition if.
(6) n P 3 and xi ¼ aþ h � ði� 1Þ, where h ¼ ðb� aÞ=ðn� 1Þ and i ¼ 1;2; . . . ;n (that is the nodes are equidistant);
(7) Aiðxi � xÞ ¼ Aiðxi þ xÞ for every x 2 ½0;h� and i ¼ 2; . . . ;n� 1;
(8) Aiþ1ðxÞ ¼ Aiðx� hÞ for every x 2 ½xi; xiþ1� and i ¼ 1;2; . . . ;n� 1.

We limit ourselves only to the discrete case. We know that a given function f assumes assigned values in some points
p1, . . . , pm of [a,b]. We assume that the set P of these points is sufficiently dense with respect to the fixed partition, i.e.
for each i ¼ 1; . . . ;n there exists an index j 2 f1; . . . ;mg such that AiðpjÞ > 0. Then we can define the discrete F-transform
of f with respect to fA1; . . . ;Ang as the n-tuple [F1, . . . , Fn] where each Fi is given by

Fi ¼
Pm

j¼1f ðpjÞAiðpjÞPm
j¼1AiðpjÞ

ð1Þ

for i ¼ 1; . . . ;n. We call the discrete inverse F-transform of f with respect to {A1, . . . , An} to be the following function defined
in the same points p1, . . . , pm 2 [a,b]:

f F
n ðpjÞ ¼

Xn

i¼1

FiAiðpjÞ ð2Þ

Analogously to Theorem 1, we have the following approximation theorem (cfr. [1, Theorem 5]):

Theorem 1. Let f(x) be a function defined on a set P ¼ fp1; . . . ; pmg# ½a; b�. Then for every e > 0, there exist an integer n(e) and a
related fuzzy partition {A1, . . . , An(e)} of [a,b] such that P is sufficiently dense with respect to {A1, . . . , An(e)} and for every
pj 2 P; j ¼ 1; . . . ;m,

f ðpjÞ � f F
nðeÞðpjÞ

��� ��� < e ð3Þ

holds true.

3. F-transforms in two variables

We can extend the above concepts to functions in two variables In the discrete case, let f the function assume determined
values in some points (pj, qj) 2 [a, b] � [c,d], where i = 1, . . . , N and j ¼ 1; . . . ;M. Moreover, let the sets P ¼ fp1; . . . ; pNg and
Q ¼ fq1; . . . ; qMg be sufficiently dense with respect to the chosen partitions, i.e. for each i ¼ 1; . . . ;N there exists an index
k 2 {1, . . . , n} such that AiðpkÞ > 0 and for each j ¼ 1; . . . ;M there exists an index l 2 f1; . . . ;mg such that BjðqlÞ > 0. In this case
we define the matrix [Fkl] to be the discrete F-transform of f with respect to {A1, . . . , An} and {B1, . . . , Bm} if we have for each
k ¼ 1; . . . ; n and l ¼ 1; . . . ;m:

Fkl ¼
PM

j¼1

PN
i¼1f ðpi; qjÞAkðpiÞBlðqjÞPM

j¼1

PN
i¼1AkðpiÞBlðqjÞ

ð4Þ

Then we can define the discrete inverse F-transform of f with respect to fA1; . . . ;Ang and fB1; . . . ;Bmg to be the following func-
tion defined in the same points ðpj; qjÞ 2 ½a; b� � ½c; d�, with i 2 f1; . . . ;Ng and j 2 f1; . . . ;Mg, as

f F
nmðpi; qjÞ ¼

Xn

k¼1

Xm

l¼1

FklAkðpiÞBlðqjÞ ð5Þ

It is not difficult to prove that the following generalization of Theorem 1 holds:
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