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a b s t r a c t

This paper is concerned with the issue of developing a novel strategy to reduce the conser-

vatism of stability conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems. Unlike

the previous ones which are almost quadratic with respect to the state vector, a new class

of Lyapunov functions is proposed which is quadratic with respect to the Kronecker prod-

ucts of the state vector, thus including almost the existing ones found in the literature

as special cases. By combining the characterizations of homogeneous matrix polynomials

and the properties of membership functions, relaxed stability conditions are derived in the

form of linear matrix inequalities which can be efficiently solved by the convex optimiza-

tion techniques. Finally, a numerical example is provided to illustrate the effectiveness of

the proposed approach.

© 2016 Published by Elsevier Inc.

1. Introduction

The Takagi–Sugeno (T–S) fuzzy systems [28] have been attracting growing attention in the past years [2–15,17–22,24–

41] since they can approximate a wide class of nonlinear dynamic systems in a compact set. In the early literature, the

so-called quadratic Lyapunov function method [29] was a popular way to derive stability conditions. This method always

makes the stability results much conservative because it requires a common positive definite matrix to satisfy a number

of different conditions. Therefore, it is significant to find advanced Lyapunov function methods to obtain less conservative

stability conditions.

In [6,11], the piecewise Lyapunov functions were proposed to tackle the stability analysis problem for T–S fuzzy systems,

provided that the state space could be partitioned into a number of subspaces. In [3,7], another class of more versatile

and powerful Lyapunov functions, called non-quadratic Lyapunov functions, was developed, which includes the quadratic

Lyapunov function as a special case [10,13–15,19,26,32]. More recently, [19] further studied the non-quadratic Lypapunv

functions and gave a general framework for their application. Additionally, regarding the discrete-time special case, a novel

approach called the k-sample variation approach was proposed in [12], whose main idea is to replace the classical 1-sample

variation of the Lyapunov function by the variation over several samples. Obviously, the idea is of universal significance.

As the simplest non-quadratic Lyapunov function, the fuzzy Lyapunov function was proposed in [7,30] where the Lya-

punov matrix is the one-dimensional fuzzy summation of a set of symmetric matrices weighted by the membership func-

tions (MFs). The authors in [3] further extended the results in [7,30] by setting the Lyapunov matrix as the two-dimensional
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fuzzy summation. In recent years, the Lyapunov matrix has been generally constructed as the multi-dimensional fuzzy sum-

mation [4,13,19,40]. Almost at the same time, a more compact form of Lyapunov functions called homogeneous polynomially

parameter-dependent (HPPD) Lyapunov functions were proposed in [5,20,34,38] where the Lyapunov matrix is the homoge-

neous fuzzy summation of a set of symmetric matrices. It is worth noting that the multi-dimensional fuzzy summation and

the homogeneous fuzzy summation are in essence the same with respect to the relaxation of the stability conditions but

the latter is in a more compact form with a smaller number of decision variables [33].

It should be pointed out that the aforementioned Lyapunov functions are quadratic with respect to the state vector. Even

though asymptotically necessary and sufficient (ANS) conditions are obtained by combining Polya’s theorem, they could be

further relaxed since they are derived based on special Lyapunov functions. In other words, these conditions are ANS only in

the sense of special Lyapunov functions which are quadratic with respect to the state vector. It will be seen in the numerical

example in the sequel that the degrees of the state variables in Lyapunov functions play a very important role in reducing

the conservatism of stability conditions.

Motivated by the aforementioned discussions, this paper further investigates the stability of discrete-time T–S fuzzy sys-

tems by employing a new class of Lyapunov functions, which is quadratic with respect to the Kronecker products of the

state vector. The proposed Lyapunov functions significantly enlarge the freedom of stability analysis for discrete-time T–S

fuzzy systems by considering more information of the state vector. The corresponding ANS conditions are derived as well by

applying Polya’s theorem and the properties of MFs. The remainder of this paper is arranged as follows. Section 2 introduces

preliminaries and backgrounds; the main results are presented in Section 3; a numerical example is given in Section 4; a

conclusion is provided in Section 5.

Notations. Throughout this paper, a star (∗) denotes the transposed term in a symmetric matrix. Ir denotes the set

{1, 2, . . . , r}. Xz(t) and Xz+(t) denote
∑r

i=1 hi(z(t))Xi and
∑r

i=1 hi(z(t + 1))Xi, respectively. The notation X ≥ Y (respectively,

X > Y) means that X–Y is positive semi-definite (respectively, positive definite) when X and Y are real symmetric matrices

or that every element of X–Y is nonnegative (respectively, positive) when X and Y are real vectors. A⊗B and A⊗m denote

Kronecker product of matrices A and B and mth Kronecker power A⊗A⊗���⊗A (m times), respectively. N and Z denote the

sets of the nonnegative and positive integers, respectively. d! means factorial operation, i.e., d! = d × (d − 1) × · · · × 1.

2. Preliminaries and backgrounds

2.1. Homogeneous matrix polynomials

The following definitions and notations associated with homogeneous matrix polynomials are consistent with those in

[5,20,34,38].

Let Pg(h) be a homogeneous matrix polynomial of degree g in h ∈ R
r, which is defined as

Pg(h) �
∑

k∈Kr(g)

hkPk (1)

where hk = h
k1
1

h
k2
2

, . . . , hkr
r , h ∈ �r, k = k1k2, . . . , kr, are the monomials; Pk ∈ R

n×n, k ∈ Kr(g), are matrix-valued coefficients;

�r � {h ∈ R
r|∑r

i=1 hi = 1, h ≥ 0}; Kr(g) is the set of r-tuples obtained as all possible combinations of nonnegative integers ki,

i ∈ Ir, such that k1 + k2 + · · · + kr = g. Here, Jr(g) is defined as the number of the elements in Kr(g), i.e., Jr(g) = (r+g−1)!
(r−1)!g!

. The

usual operations of summation k + k′ and subtraction k − k′ are defined componentwise. And one writes k ≥ k′ if ki ≥ k′
i
,

∀i ∈ Ir . A special r-tuple ei ∈ Kr(1) is written as ei = 0 · · · 0 1︸︷︷︸
ith

0 · · · 0. Especially, P0(h)�P, P1(h)�Pz(t) (let Pei
= Pi).

For simplicity of notations, the following shortenings will be used in the sequel:

hi(t) = hi(z(t)), hi = hi(t), Az = Az(t), h = [h1, . . . , hr]T , x = x(t),

π(k) = k1!k2!, . . . , kr!, h+
i

= hi(t + 1), h+ = [h+
1 , . . . , h+

r ]T , K(g) = Kr(g).

With the aforementioned definitions, the following lemma is obtained by summarizing some results in [5,20,34,38], which

is very useful in the development of the main results.

Lemma 1. Let Fg(h) defined in (1), g, d, d1, d2 ∈ N. Then, the following equations hold:(
r∑

i=1

hi

)d

=
∑

k∈K(d)

hk d!

π(k)
, (2)

(
r∑

i=1

hi

)d

Fg(h) =
∑

k∈K(g+d)

hk
∑

k′∈K(g),k≥k′

d!

π(k − k′)Fk′

=
∑

k∈K(g+d)

hk
∑

k′∈K(d),k≥k′

d!

π(k′)Fk−k′ , (3)
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