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a b s t r a c t

Negative correlation learning (NCL) aims to produce ensembles with sound generalization
capability through controlling the disagreement among base learners’ outputs. Such a
learning scheme is usually implemented by using feed-forward neural networks with error
back-propagation algorithms (BPNNs). However, it suffers from slow convergence, local
minima problem and model uncertainties caused by the initial weights and the setting
of learning parameters. To achieve a better solution, this paper employs the random vector
functional link (RVFL) networks as base components, and incorporates with the NCL strat-
egy for building neural network ensembles. The basis functions of the base models are gen-
erated randomly and the parameters of the RVFL networks can be determined by solving a
linear equation system. An analytical solution is derived for these parameters, where a cost
function defined for NCL and the well-known least squares method are used. To examine
the merits of our proposed algorithm, a comparative study is carried out with nine bench-
mark datasets. Results indicate that our approach outperforms other ensembling tech-
niques on the testing datasets in terms of both effectiveness and efficiency.

Crown Copyright � 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

In the last two decades, ensemble learning framework has received considerable attention and resulted in many novel
machine learning techniques, for instance, bagging, boosting and random forests [1–4]. The base models of an ensemble
can be trained individually or collectively. Ensemble methods also differ in the way that they handle the training data during
the learning phase. For example, simple averaging ensembles [5,6] use whole training data to learn base models, but with
different parameter settings for each, while bagging, boosting and random forests use different parts of the training dataset
for each base model to gain more diversity among ensemble components. Bagging randomly resamples replicates from a gi-
ven training dataset [1]; while Boosting sequentially resamples the training dataset based on mis-classification probability
distribution calculated from previous learnt models [2,3]. Random forests, however, create the training data variability based
on the input features rather than the training examples. It selects the splitting features for each node in its base decision
trees from a random set of input features [4]. On the other hand, the merging weights of base models can be set equally
[7], or learnt by using heuristic means or minimizing a cost function [8,9]. Note that boosting ensembles adapt their aver-
aging weights during the course of training weak learners [3]. It is worthy mentioned that ensemble learning is essential to
learn complex domain problems that have complex nonlinear relationships among input variables and output variables. In
such cases, the hypotheses space of base models is very large and one single hypothesis cannot model the underlying data
distribution.
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An important issue in ensemble learning algorithms is how to maintain no duplication of base models, i.e., modeling
different regions of the features space by different base models without deteriorating their individual accuracies. Meanwhile,
the overall performance of ensemble should be maintained [7]. This is called ensemble diversity in literature [7,10].
Evolutionary approaches are widely used to select ensemble component networks with maximum disagreement among
their outputs [8,11–13]. However, such evolutionary-based approaches take long time to converge. In [7] the ensemble base
models were trained by using cross-validation datasets and a diversity metric was introduced to trade-off the bias-
variance–covariance. The bias-variance–covariance decomposition raised the attention to find ensemble models with min-
imum covariance among the base models so that the individual model performance can be retained [10].

Negative correlation learning (NCL) [14] amends the cost function with a penalty term that weakens the relationship
with other individuals and controls the trade-off among the bias, variance and covariance in the ensemble learning [10].
Later, this idea was extended in [15]. It has been noticed that the proposed approach in [13] can automatically deter-
mine an optimal size of ensemble by thoroughly exploring the ensemble hypotheses space using NCL. Recently, a reg-
ularized version of the negative correlation learning techniques was proposed in [16], aiming at reducing the overfitting
risk for noisy data.

In addition to the diversity concern in ensemble learning, the way of generating the component models is crucial. Neural
networks with back-propagation learning algorithms are mostly employed for this purpose. Usually, single-layer feed-for-
ward (SLFN) networks are sufficient to problem solving due to its universal approximation capability [17–19]. Unfortunately,
the gradient-based learning algorithms for training SLFNs suffer from local minima problem, slow convergence and very
poor sensitivity to learning rate setting. To overcome these difficulties, random vector functional-link (RVFL) networks were
proposed [20–22], where the weights between the input layer and the hidden layer can be randomly assigned and no need to
be tuned. Then, the well-known least square methods can be used to calculate the output weights [23]. This flat-net archi-
tecture universally approximates any continuous function and dramatically reduces the training time [22,24]. Our recent
work reported in [12] shows that RVFL-based ensembles take some advantages comparing against other existing ensembling
methods. It is interesting to see that in most of the cases the resulting ensemble is composed of few component models (4–
12). Note that this finding is obtained by selecting the best RVFL candidates from a pool. Because the best candidates selec-
tion is implemented by using genetic algorithms, it is a time consuming process to achieve the final ensemble model. Indeed,
this motivates us to do further studies in this direction.

Based on our previous studies, this paper aims to develop a fast solution on building neural network ensembles. Our pro-
posed algorithm (termed as DNNE) randomly initializes the hidden layer parameters of base RVFL networks, and then em-
ploys the least square method with negative correlation learning scheme to analytically calculate the output weights of these
base networks. A minimum norm least square solution is derived and formulated in a matrix form for computational exer-
cises. A comparative study on data regression is carried out. Results over the testing datasets are promising, and supporting a
positive statement on performance assessment among bagging, boosting, simple ensembles and random forests.

The remainder of this paper is organized as follows. Basics on RVFL networks, ensemble learners and the negative corre-
lation learning are reviewed in Section 2. Our solution with a detailed description on the proposed learning algorithm is gi-
ven in Section 3. To evaluate the performance of our approach, some benchmark datasets are employed in this study and
results with comparisons and discussions are presented in Section 4. Finally, we conclude this work in the last section.

2. Background

Learning from data is a process of finding a hypothesis f ðx; hÞ that estimates an unknown target function wðxÞ, where h is
the model parameters to be tuned.The learnt hypothesis can be single or composite model (i.e., ensemble of base hypothe-
ses). Only few works reported the use of random weights in ensemble base networks [10,20] while it has been widely inves-
tigated in single neural networks [21,22,25,26]. The theoretical foundation of randomness in neural networks can be deeply
understood from the function approximation task with Monte-Carlo (MC) methods. It has been shown in [22] that any con-
tinuous function defined on a compact set can be represented by a limit-integral of multivariate continuous function with
integration in the parameters space. MC method approximates this multiple integral by drawing random samples of the
parameter vector from uniform distribution defined over the limit-integral domain. More likely, the Monte-Carlo estimated
accuracy proportionally improves along with an increase of the number of random samples and the approximation error
tends to zero as this number goes to infinity. A special case of this general approximation theory becomes the random vector
functional link (RVFL) networks, which can be represented as single-layer feed-forward networks (SLFNs). The multivariate
continuous functions in the MC method play a role as the activation functions of hidden neurons in the SLFN, and the input
weights and the hidden layer biases of the SLFN correspond to the sampled parameters vector in the MC method. Eventually,
the output weights of the SLFN function as the estimated parameters in the MC method.

2.1. Review of random basis function approximators

It has been proved that RVFL networks are universal approximators for continuous functions on compact sets and its

approximation error converges to zero with order O C=
ffiffiffi
L
p� �

, where L is the number of basis functions (hidden neurons)

and C is a constant [22,26]. An RVFL network can be defined as a SLFN model,
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