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a b s t r a c t

Dimensionality reduction that preserves certain characteristics of data is needed for numer-

ous reasons. In this work we focus on data coming from a mixture of Gaussian distributions

and we propose a method that preserves the distinctness of the clustering structure, although

this structure is assumed to be yet unknown. The rationale behind the method is the follow-

ing: (i) had one known the clusters (classes) within the data, one could facilitate further anal-

ysis and reduce space dimensionality by projecting the data to the Fisher’s linear subspace,

which — by definition — best preserves the structure of the given classes; (ii) under some rea-

sonable assumptions, this can be done, albeit approximately, without prior knowledge of the

clusters (classes). In this paper, we show how this approach works. We present a method of

preliminary data transformation that brings the directions of largest overall variability close

to the directions of the best between-class separation. Hence, for the transformed data, sim-

ple PCA provides an approximation to the Fisher’s subspace. We show that the transformation

preserves the distinctness of the unknown structure in the data to a great extent.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. State-of-the-art

Dimensionality reduction techniques, also referred to as feature extraction algorithms, are a common way of reducing in-

trinsic complexity of data and thus facilitates further analysis. It is typically expected that certain characteristics of data will

be preserved in the process. In particular, for data exhibiting a clustering structure, the structure is expected to be preserved

to the largest possible extent. Frequently, it is captured in terms of distances between observations as in [8], where one of the

first methods for suitable linear feature extraction is described. Another line of research starts with [32], where a transforma-

tion for continuous data that lowers the dimensionality without increasing the probabilities of misclassification is proposed. The

approach is further developed in [10,37,44]. Among more recent works, a method of dimensionality reduction that preserves

clustering structure is proposed in [11], where, however, the assumption of known cluster assignments has been made. Finally,

an interesting overview of methods suitable for a pattern recognition task is provided in [40], while in [4] challenges of feature

selection in the context of big data are presented. In [14,20,39] recent advances in the area of feature selection are described,

detailing approaches via stratification, grouping and information theory, respectively. In [5] the focus is directly on selecting

attributes of largest power of class discrimination.
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An approach to dimensionality reduction which directly aims at preserving the distinctness of the structure has been origi-

nated in a series of works on learning mixture parameters in an appropriate subspace. In [22], one-dimensional random projec-

tions were considered and generalized to arbitrary number of clusters in [29]. Based on Johnson–Lindenstrauss (concentration)

theorem, random projections to substantially lower — but in general — more than one-dimensional subspace were suggested in

[9]. In [3], distributional assumptions were relaxed, however the main assumption of high initial cluster separation, intrinsic for

concentration theorem, was retained. Only in [6], were random projections replaced with a spectral approach, making substan-

tial progress in relaxing the requirement of initial cluster separation. It was first applied in [38] and the results were improved

in [1,23]. A breakthrough was achieved in [7]. The authors presented an affine invariant parameter learning algorithm where a

preliminary data transformation was used to enhance the distinctness of the clustering structure, thereby further relaxing the

separability assumptions. From our perspective, it suggested that it is possible to sharpen the clustering structure without actu-

ally knowing it. This significant discovery has become the major inspiration for the method proposed in the following sections.

The novelty of the proposed approach is reflected in its ability to reduce dimensionality and preserve cluster structure to

the largest possible extent without explicitly knowing it. As described above, methods that aim at preserving structure typically

assume knowledge of the classes. On the other hand, those that do not assume such knowledge, do not evaluate (let alone

maximize) the clustering structure.

1.2. Model and notation

We consider a data set X = (x1, . . . , xn)T , X ∈ R
n×d of n observations coming from a mixture of k d-dimensional normal

distributions

f (x) = π1 f1(μ1,�1)(x) + · · · + πk fk(μk,�k)(x),

where

fl(μl,�l)(x) = 1

(
√

2π)d
√

det �l

e− 1
2 (x−μl)

T �−1
l

(x−μl).

We call each fl(μl, �l), l = 1, . . . , k a component of the mixture and each π l, l = 1, . . . , k a mixing factor of the corresponding

component (see [17] or [28] and [26] or [27] for alternatives). We assume that for all the components equal mixing factors are

assigned, π1 = · · · = πk = 1
k

. However, we allow different covariance matrices �l. Additionally, we assume large space dimen-

sionality with respect to the number of components, d > k − 1, to leave room for dimensionality reduction. We also assume

large number of observations with respect to d, that is n � d. We take the number of components k as known. This puts no

constraints on our considerations as the procedure may easily be repeated for all k within the range of interest. The parameters

of the mixture are given by μ = (1/k)
∑k

l=1 μl , μ ∈ R
d and � = (1/k)

∑k
l=1 �l + (1/k)

∑k
l=1 (μl − μ)(μl − μ)T , � ∈ R

d×d . The

latter constitutes the covariance decomposition to the within and between cluster component (see [28]).

We assume that each mixture component corresponds to one cluster. A grouping that divides observations into clusters is

called a clustering solution or a clustering structure. Note that heterogeneity of covariance matrices allows for varied cluster

shapes, while equal mixing factors imply balanced cluster sizes.

Let μX ∈ R
d and �X ∈ R

d×d refer to the empirical estimates of the mixture parameters. We assume the covariance matrix to

be of full rank, rank(�X) = d. Let TX = n�X be the total scatter matrix for X. We say that data is in isotropic position if μX = 0 and

TX = I.

For symmetric C ∈ R
d×d let C = ACLCAT

C
be the spectral decomposition (eigenproblem solution) for matrix C, where LC =

diag(λC
1
, . . . , λC

d
), λC

1
≥ · · · ≥ λC

d
) is a matrix of eigenvalues for C in a non-decreasing order and AC = (aC

1
, . . . , aC

d
) is a matrix of

the corresponding column eigenvectors. Alternatively, when considering the eigenproblem for different data sets, we will use

the data set as a subscript or superscript (e.g. CX = AX LX AT
X

). By PC(k − 1) we denote the principal component subspace spanned

by the first k − 1 principal components (i.e. k − 1 eigenvectors of the matrix �X corresponding to its k − 1 largest eigenvalues,

see more in [17],[25] or [28]and references therein for possible extensions).

By S∗ we denote the Fisher’s discriminant (Fisher’s subspace), which is a (k − 1)-dimensional subspace that best discriminates

k given classes as

S∗ = argmax
S⊂R

d

dim (S)=k−1

k−1∑
j=1

vT
j
BX v j

k−1∑
j=1

vT
j
TX v j

,

where BX = ∑k
l=1 nl(μX,l − μX)(μX,l − μX)T is the between cluster component of the total scatter matrix for X with μX, l denot-

ing the empirical mean of lth cluster, l = 1, . . . , k, and v1, . . . , vk−1 is the orthonormal basis for S. Details of this specific definition

are given in [13], while the general concept is discussed in [28].

It is well known that S∗ is the subspace spanned by k − 1 eigenvectors corresponding to the non-zero eigenvalues of a gener-

alized eigenproblem defined by BX and TX matrices,

BX v = λTX v, (1)



Download English Version:

https://daneshyari.com/en/article/392840

Download Persian Version:

https://daneshyari.com/article/392840

Daneshyari.com

https://daneshyari.com/en/article/392840
https://daneshyari.com/article/392840
https://daneshyari.com

