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a b s t r a c t

A new adaptive decentralized soft decision combining rule for multiple-sensor distributed
detection systems with data fusion is proposed. Unlike previously published rules, the pro-
posed combining rule fuses soft decisions of sensors rather than hard decisions of sensors
and does not require the knowledge of the false alarm and detection probabilities of the
distributed sensors. Such a fusion rule is adaptive, insensitive to the instabilities of the sen-
sor thresholds, and has the advantage of soft decision fusion. The proposed combination
rule is derived: (1) for the case where the fusion center estimates the error probabilities
of the sensors and (2) for the case where the fusion center does not estimate the error prob-
abilities of the sensors. The performance of the proposed approach is evaluated, and illus-
trative examples are presented in the cases of Gaussian and Rayleigh distributed
observations. Comparisons with the optimum centralized fusion, the optimum soft deci-
sion fusion, a soft decision fusion approach based on fusing confidence levels, and the opti-
mum decentralized hard decision fusion are also presented. The results indicate that the
proposed approach significantly outperforms the optimum decentralized hard decision
fusion, is better than the approach based on fusing confidence levels, and has a perfor-
mance similar to that of the optimum soft decision fusion.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Multiple-sensor data fusion systems have attracted the attention of many researchers, due to the increasing demand in
the deployment of multiple sensors for military and civilian purposes [3,4,5–7,13,24,27,31,41,51,55,66]. These multiple-sen-
sor systems have the advantages of greater performance, reliability, and survivability than single-sensor systems. One of the
main aspects of the data fusion of multiple sensors is the detection using distributed multiple sensor systems [38,51,64,67].
Multiple-sensor systems have many applications, such as intrusion detection [20,46,64], multi-access channels [37,65],
diversity communication systems [11,15,24], fault detection [35,47,69], surveillance using distributed radar networks
[21,32], wireless sensor networks [28,30,40,43,54,63], data mining [45,49], biomedical applications [19], image detection
[17], target tracking [6,7], mobile service robots [14], world wide web [2,22,48,53], and fire detection [42]. We have focused
on target detection [8–10].

In distributed detection systems, there are multiple sensors that observe multiple targets and send local information
about a hypothesis to a combining center. The combining (data fusion) center is responsible for combining the information
collected by each of the individual sensors to determine a global hard decision (0 (target is absent) or 1 (target is present))
about the same hypothesis. Such systems are expected to exhibit improved performance and be more reliable and immune
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to noise interference [9,10]. There are three methods for combining the information from the sensors in multiple-sensor dis-
tributed detection systems: centralized fusion, decentralized hard decision fusion, and decentralized soft decision fusion
[1,8,59]. In centralized fusion, all the sensor observations are transmitted directly, without any signal processing, to the com-
bining center to determine the final global decision. This fusion method achieves the optimum performance at the expense of
the need for a high communication bandwidth and large memory. Due to these limitations, the centralized fusion method is
not convenient for real-time processing and is never implemented in practice [8,16,23,26,57,61,62,68]. In the decentralized
hard decision fusion method, the distributed sensors are allowed to determine local hard decisions, and then these local
decisions are sent to the combining center to determine the final global decision [24,58,59,61,68]. This fusion method has
the advantages of a low communication bandwidth requirement and low cost. However, the combining center has only par-
tial hard information, as communicated by the sensors [9,18,61]. The result is a loss of performance compared to that of the
centralized fusion method. In the decentralized soft decision fusion method, each distributed sensor determines a soft deci-
sion (a value between 0 and 1) rather than a hard decision (0 or 1). This method is used to reduce the performance loss be-
tween the decentralized hard decision fusion method and the centralized fusion method.

There are previous significant contributions in the case of the decentralized hard decision fusion method and the decen-
tralized soft decision fusion method. The optimum fusion rule, under the assumptions that the a priori probabilities are
known and that each sensor uses the likelihood ratio test to arrive at its own local decision, is presented in [47,59,61].
The optimum fusion rule for unknown a-priori probabilities, in terms of the Neyman–Pearson test at the local sensors as well
as at the fusion center, is derived in [58,59]. According to the Neyman–Pearson strategy, the global detection probability is
maximized for a desired global false alarm probability. In [18,59,61], the globally optimal solution to the combining strategy
is shown to be the solution that maximizes the global detection probability for a fixed global false alarm probability, when
the distributed sensors transmit independent binary decisions to the fusion center, consists of performing likelihood ratio
tests at all the sensors and a Neyman–Pearson test at the fusion center. Bayesian model-based multiple-sensor distributed
detection systems for fusing the detection probabilities obtained from a distributed detection system have been presented in
[33]. In this model, each local sensor generates a probability that represents its confidence on the signal present hypothesis.
The fusion center combines all the reported probabilities and determines a global decision. This model, which is equivalent
to soft decision fusion, requires known and stationary probability density functions.

The optimum decentralized soft decision fusion approach according to the maximum distance criterion, in the case of
independent sensors and a fusion center, is derived in [34]. This work considered the optimum soft decision fusion in the
general case of n sensors and provided the optimum sub-partitioning of the local decision spaces. In this case, each local deci-
sion space is partitioned into m exclusive regions instead of two exclusive regions. With more than two partitions, each local
sensor is able to convey more information. As shown in [34], the optimum sub-partitioning of the local decision spaces is
equivalent to partitioning of the false alarm and the detection probabilities. The details of the derivations of the expressions
for optimum subpartitioning can be found in [34]. A target detection example and a comparison with the optimum central-
ized fusion, in the case of Rayleigh distributed observations, is presented in [34]. The extension of this method to the case of
over three thresholds is very complicated and requires analytic expressions for the functional relationships between the
detection probabilities, the false alarm probabilities, and their derivatives.

A soft decision fusion approach based on fusing the sensor confidence levels is proposed in [8]. In this case, each local
sensor provides the fusion center with a soft decision rather than a hard decision. Each soft decision represents the confi-
dence of a local sensor in its own decision. This representation is accomplished by smoothing the local sensor decisions using
soft membership functions according to the difference between the likelihood ratios of the sensors and the thresholds of the
sensors. The local-sensor soft decisions are then quantized and fused in the data fusion center. In this way, this soft decision
fusion rule combines the reliability terms weighted by the corresponding confidence levels to generate a final global deci-
sion. The reliability terms depend on the false alarm and the detection probabilities of the local sensors. The reader is re-
ferred to [8] for expressions of the soft decision fusion rule, the terminals of the quantization intervals, and the
representative levels. The performance of this soft decision fusion approach is evaluated and compared to the optimum cen-
tralized fusion method and the optimum decentralized hard decision fusion method in the cases of Gaussian and Rayleigh
distributed observations. The soft decision fusion method depends on the known and stationary false alarm and detection
probabilities. A soft decision fusion approach based on fuzzy detectors is presented in [36]. This soft approach is an extension
of the classical hard decision fusion approach, in which the crisp binary threshold, which quantizes the received observa-
tions, is replaced with a fuzzy threshold. The fuzzy threshold is designed to overcome the reduction in performance due
to the hard decision quantization while retaining some of its features. This improvement is accomplished in [36] by
smoothing the sensor decisions using fuzzy thresholds. The performance of this approach is evaluated according to the
Neyman–Pearson criterion and compared to the optimum decentralized hard decision fusion approach in the case of
Gaussian distributed observations. Extension of this method to the cases of a large number of sensors and targets is imprac-
tical for real-time processing.

The optimal decision fusion in the Neyman–Pearson sense is derived in [58] and reconsidered in [8] when the local sen-
sors transmit one binary quality information bit in addition to the individual binary sensor decisions. This method uses three
different thresholds at each local sensor. A binary 1 quality bit indicates ‘‘confidence’’, whereas a binary 0 quality bit indi-
cates ‘‘no confidence’’. A binary 1 quality bit is sent along with the individual sensor decision when the sensor likelihood
ratio is either greater than the upper threshold or less than the lower threshold. Otherwise, a binary 0 quality bit is sent.
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