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a b s t r a c t

Motivated by the wavel et compression techniques and their app lications, we consider the 
following problem: Given an unsorted array of numerical values and a threshold, what is 
the minimum number of elements chosen from the array, such that the sum of these ele- 
ments is not less than the threshold value. In this article, we first provide two linear time 
algorithms for the problem. We then demonstrate the efficacy of these algorithms through 
experiments. Lastly, as an application of this research, we indicate that the construction of 
wavelet synopses on a prescribed error bound (in L2 metric) can be solved in linear time.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction 

Given an unsorted list of numerical values A with n elements and a threshold q > 0, the error-bound sum selection (Select-
Sumq) problem 1 termed in this article is to find S # A of minimized cardinal ity such that 

P
s2Ss P q. That is, acquiring the top 

most valued elements in an array with the sum equal to or greater than the threshold value. One obvious solution for this prob- 
lem is to sort the sequence into decreasi ng numeri cal order and then output the current largest element s one by one until their 
sum is equal to or greater than the threshold value. Clearly, this will take O(nlogn) time in the worst case. As the array A be-
comes very large, this naive approach can be inefficient in time and expensiv e for online stream data processing.

The SelectSum q problem is slightly related to the Selection problem. Solved by Blum et al. [2] in 1972, the Selection prob- 
lem aims at finding the kth largest element in an unsorted array. Using the divide-and-con quer technique, Blum et al. derived 
a linear time algorithm 2 through wisely selecting pivot elements for partition s. This was an importan t complexi ty result be- 
cause till then the selection problem was assumed to be as difficult as sorting. A lower bound of 2n compari sons (in the 
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1 The dual proble m, which is to find the maximum number of elements from the array such that the sum of these elements is not more than the given 
threshold, can be solved similarly.

2 Also known as the median-of-medians algorithm.
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worst-case) for the median selection problem was due to Bent and John [1] in 1985. Refer to [3,4] for the detailed research on 
the Selection problem.

The SelectSum q Problem is a fundamenta l problem for many practical applications. In Section 4, we will use an example 
to illustrate its application on streaming data compression.

In this article, we explore the SelectSum q problem and provide linear time algorithms for the problem. We first indicate 
that the SelectSum q problem is solvable in linear time by using the Selection algorithm in a straight way. We then provide a
more involved algorithm for the problem. With this article’s result, we conclude that the error-bound wavelet compress ion 
on square error (L2) can be computed in linear time.

The rest of the paper is organized as follows. Section 2 presents the relevant concepts and the two algorithms for the 
SelectSumq problem. Section 3 reports the experiment results of these proposed algorithms. Section 4 is an application of 
the SelectSum q problem on streaming data compression and Section 5 concludes this article.

2. Algorithms on SelectSum q

In this section, we introduce two new algorithms, SelectSum1 and SelectSum2, both used to solve the SelectSum q prob-
lem. Both algorithms are based on the divide-an d-conquer technique and recursively using the Selection algorithm. To sim- 
plify the study of this problem, we have the following notations and assumptions.

Let A = [a1,a2, . . . , an] be an array with cardinality jAj = n where the ith element ai is denoted as A[i]. Clearly, the total sum 
of A; t ¼

Pn
i¼1A½i�, is derivable by one linear scanning of A.

Suppose that S # A is a solution of SelectSum q. Since S is the smallest subset of A satisfying
P

ai2Sai P q, then ai > 0 holds 
true for each ai 2 S. Therefore, we only consider array A where each element is positive in this article as elements of non-po- 
sitive value will be not in the solutions. For the existence of a solution, we also assume that t P q holds for any array A con- 
sidered in this article.

As we mentioned previously, the major procedure of the proposed algorithms is to compute Select (A,k), the kth largest 
element from the array. Considering that array A may have many elements with a same value, we therefore need to clarify 
the meaning of kth largest element and have the following definition.

Definition 1 (kth largest element ). The element at 2 A is called the kth largest element of array A if jTj < k 6 jTj + jEj for
T = {ai 2 Ajai > at} and E = {ai 2 Ajai = at}.

Example 1. Let A = [1,6,4,2,4,8,4] and q = 21. A solution of SelectSum q can be S = {a2,a3,a6,a7}, which is {6,4,8,4}. Next, let 
us consider element a3 = 4. Since jTj = j{ai 2 Ajai > 4} j = j{6,8} j = 2, jEj = j{ai 2 Ajai = 4} j = j{4,4,4} j = 3 and k satisfies
2 < k 6 2 + 3, it concludes that element 4 is the third (or the fourth or the fifth) largest element of A. That is, Select 
(A,3) = Select (A,4) = Select (A,5) = 4.

In the following two subsectio ns, we will present the two algorithms, SelectSum1 and SelectSum2 , for the SelectSum q
problem and indicate they have linear time complexitie s. Thus, concludin g the following major result of this article.

Theorem 1. The SelectSum q problem for array A and threshold q > 0 can be solved in linear time O(jAj).

Algorithm 1. Function SelectSum1 (A,q;U)

Input:
A is a data array of n elements; q is a specified threshold 

Output:
S is a minimum subset of A satisfying

P
s2Ss P q

Description:
1: % Initialization

2: t  
P

s2As
3: if (t P q) then
4: % Find a good pivot element m for partitions 

5: m Select (A,djAj/2e), the median of A
6: % Recursive partition using m
7: S1 {a 2 Aja > m}; t1  

P
s2S1

s
8: S2 {a 2 Aja < m}; t2  

P
s2S2

s
9: if (t1 P q) then
10: call SelectSum1 (S1,q;U)
11: end if 
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