Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A note on "Numerical solutions for linear system of first-order fuzzy differential equations with fuzzy constant coefficients"

Marzieh Najariyan^a, Mehran Mazandarani^{b,*}

^a Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran ^b Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

ARTICLE INFO

ABSTRACT

In this note, it is shown that some obtained results in Solaymani Fard amd Ghal-Eh (2011) are not true.

© 2015 Elsevier Inc. All rights reserved.

Article history: Received 1 September 2014 Received in revised form 23 November 2014 Accepted 1 February 2015 Available online 7 February 2015

Keywords: Fuzzy differential equations Ordinary differential equations

1. Introduction and basic concepts

Throughout this note, the set of all real numbers is denoted by \mathbb{R} , and the set of all type-1 fuzzy numbers on \mathbb{R} by E_1 . The left and right end-points of α -*level* sets of \widetilde{A} , $\left[\widetilde{A}\right]^{\alpha}$, are denoted by \underline{A}^{α} and \overline{A}^{α} respectively.

The product of two type-1 fuzzy numbers \tilde{u} and \tilde{v} , $\tilde{w} = \tilde{u}\tilde{v}$, in the α -level is as follows: $[\tilde{w}]^{\alpha} = [\underline{w}^{\alpha}, \overline{w}^{\alpha}] = [\tilde{u}\tilde{v}]^{\alpha}$, in which $\underline{w}^{\alpha} = \min\{\overline{u}^{\alpha}\underline{v}^{\alpha}, \overline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\overline{v}^{\alpha}\}$ and $\overline{w}^{\alpha} = \max\{\overline{u}^{\alpha}\underline{v}^{\alpha}, \overline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\overline{v}^{\alpha}, \underline{u}^{\alpha}\underline{v}^{\alpha}\}$.

The triangular type-1 fuzzy number $\tilde{u} \in E_1$ is characterized by $\tilde{u} = (a, b, c)$ where $a \leq b \leq c$. The left and right end-points of the α – *level* sets of \tilde{u} are determined as $b - (1 - \alpha)(b - a)$ and $b + (1 - \alpha)(c - b)$, respectively.

In [1], an iterative method has been proposed for solving the following class of Fuzzy Differential Equations [FDEs] system:

$$\tilde{X}(t) = \tilde{A}\tilde{X}(t) + \tilde{f}(t), \quad \tilde{X}(0) = \tilde{X}_0$$
(1.1)

where $\dot{\tilde{X}}(t) = \frac{d\tilde{X}(t)}{dt}$, $\tilde{X} : [0, t_f] \to E_1^n$ is a fuzzy function on the real interval $[0, t_f]$, $\tilde{A} = [\tilde{a}_{ij}]_{n \times n}$ is a matrix, $\tilde{a}_{ij} \in E_1$, $\tilde{f} : [0, t_f] \to E_1^n$ is a fuzzy function, and \tilde{X}_0 is the initial value of the system.

2. The note

In [1], FDEs system (1.1) has been transformed to the following two systems of Ordinary Differential Equations [ODEs]

* Corresponding author.

http://dx.doi.org/10.1016/j.ins.2015.02.006 0020-0255/© 2015 Elsevier Inc. All rights reserved.

CrossMark

E-mail addresses: Marzieh.najariyan@gmail.com (M. Najariyan), me.mazandarani@gmail.com, me.mazandarani@ieee.org (M. Mazandarani).

$$\begin{cases} \underline{\dot{X}}^{\alpha}(t) = \underline{\left[\widetilde{A}\widetilde{X}(t)\right]}^{\alpha} + \underline{f}^{\alpha}(t) & \underline{X}^{\alpha}(0) = \underline{X}_{0}^{\alpha} \\ \overline{\dot{X}}^{\alpha}(t) = \overline{\left[\widetilde{A}\widetilde{X}(t)\right]}^{\alpha} + \overline{f}^{\alpha}(t) & \overline{X}^{\alpha}(0) = \overline{X}_{0}^{\alpha} \end{cases}$$
(2.1)

where $\widetilde{X}(t)$ is Hukuhara differentiable, i.e. $\left[\dot{\widetilde{X}}(t)\right]^{\alpha} = \left[\underline{\dot{X}}^{\alpha}(t), \overline{\ddot{X}}^{\alpha}(t)\right]$; and $\left[\widetilde{A}\widetilde{X}(t)\right]^{\alpha}$, $\left[\widetilde{A}\widetilde{X}(t)\right]^{\alpha}$ are determined as:

$$\frac{\left[\widetilde{A}\widetilde{X}(t)\right]^{\alpha}}{\left[\widetilde{A}\widetilde{X}(t)\right]^{\alpha}} = \min\left\{BU \middle| B \in \left[\underline{A}^{\alpha}, \overline{A}^{\alpha}\right], U \in \left[\underline{X}^{\alpha}(t), \overline{X}^{\alpha}(t)\right] \right\},$$
$$\overline{\left[\widetilde{A}\widetilde{X}(t)\right]}^{\alpha} = \max\left\{BU \middle| B \in \left[\underline{A}^{\alpha}, \overline{A}^{\alpha}\right], U \in \left[X^{\alpha}(t), \overline{X}^{\alpha}(t)\right] \right\}.$$

In [1], based on relationship (2.1), the following ODEs systems have been claimed to be the transformation of FDEs system (1.1) provided that \overline{A}^{α} is non-positive:

$$\begin{cases} \underline{\dot{X}}^{\alpha}(t) = \underline{A}^{\alpha} \overline{X}^{\alpha}(t) + \underline{f}^{\alpha}(t) & \underline{X}^{\alpha}(0) = \underline{X}_{0}^{\alpha} \\ \overline{\dot{X}}^{\alpha}(t) = \overline{A}^{\alpha} \underline{X}^{\alpha}(t) + \overline{f}^{\alpha}(t) & \overline{X}^{\alpha}(0) = \overline{X}_{0}^{\alpha} \end{cases}$$
(2.2)

The point is that, ODEs systems (2.2) cannot be considered, in general, as the transformation of FDEs system (1.1). As a matter of fact, the functions $\underline{X}^{\alpha}(t)$ and $\overline{X}^{\alpha}(t)$ are unknown, and they may be positive and/or negative on the real interval $t \in [0, t_f]$. To illustrate, consider the following one-dimensional FDE:

$$\tilde{x}(t) = k\tilde{x}(t)$$
 $\tilde{x}(0) = (-10, -9, -8)$ $t \in [0, 5]$ (2.3)

where $\tilde{k} = (-3, -2, -1)$. Based on the relationship (2.2), FDE (2.3) is transformed to

$$\begin{cases} \underline{\dot{x}}^{\alpha}(t) = (-2 - (1 - \alpha))\overline{x}^{\alpha}(t) & \underline{x}^{\alpha}(0) = -9 - (1 - \alpha)\\ \overline{\dot{x}}^{\alpha}(t) = (-2 + (1 - \alpha))\underline{\dot{x}}^{\alpha}(t) & \overline{\dot{x}}^{\alpha}(0) = -9 + (1 - \alpha) \end{cases}$$
(2.4)

which means

$$\frac{\left[\tilde{k}\tilde{x}(t)\right]^{\alpha}}{\left[\tilde{k}\tilde{x}(t)\right]^{\alpha}} = \min\left\{BU|B \in [-2 - (1 - \alpha), -2 + (1 - \alpha)], U \in [\underline{x}^{\alpha}(t), \overline{x}^{\alpha}(t)]\right\} = (-2 - (1 - \alpha))\overline{x}^{\alpha}(t),$$

$$\overline{\left[\tilde{k}\tilde{x}(t)\right]^{\alpha}} = \max\left\{BU|B \in [-2 - (1 - \alpha), -2 + (1 - \alpha)], U \in [\underline{x}^{\alpha}(t), \overline{x}^{\alpha}(t)]\right\} = (-2 + (1 - \alpha))\underline{x}^{\alpha}(t).$$

According to FDE (2.3), it is obvious that there exists $t' \in [0,5]$ such that $\underline{x}^{\alpha}(t') < 0$. $\bar{x}^{\alpha}(t') < 0$. Then, it can be concluded that $(-2 + (1 - \alpha))\underline{x}^{\alpha}(t') \ge (-2 + (1 - \alpha))\overline{x}^{\alpha}(t') > 0$ and $(-2 - (1 - \alpha))\underline{x}^{\alpha}(t') \ge (-2 - (1 - \alpha))\overline{x}^{\alpha}(t') \ge (-2 + (1 - \alpha))\overline{x}^{\alpha}(t') > 0$. Consequently, we have $[\underline{k}\overline{x}(t')]^{\alpha} = (-2 + (1 - \alpha))\overline{x}^{\alpha}(t')$ and $[\underline{k}\overline{x}(t')]^{\alpha} = (-2 - (1 - \alpha))\underline{x}^{\alpha}(t')$ which mean ODEs system (2.4) cannot be considered as the transformation of FDE (2.3).

As a result, based on the product of two type-1 fuzzy numbers, the ODEs (2.2) are true on condition that \overline{A}^{α} is non-positive, and $\underline{X}^{\alpha}(t)$ is non-negative for $\alpha \in [0, 1]$ and $t \in [0, t_f]$. It is noteworthy that, in [1], no condition is assumed on functions $\underline{X}^{\alpha}(t)$ and/or $\overline{X}^{\alpha}(t)$. Based on the aforementioned, the obtained results in example 5.2 for t > 0.1 are not true. As a way of

Fig. 1. The solution of example 5.2, $\tilde{x}_1(t)$, obtained in [1].

Download English Version:

https://daneshyari.com/en/article/393063

Download Persian Version:

https://daneshyari.com/article/393063

Daneshyari.com