

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

An approach to cluster separability in a partition

K. Sabo *. R. Scitovski

Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia

ARTICLE INFO

Article history:
Received 23 October 2013
Received in revised form 31 January 2015
Accepted 5 February 2015
Available online 11 February 2015

2000 MSC: 62H30 68T10 90C26

90C27 91C20

47N10

Keywords: Clustering Data mining Cluster separability Separability balls

ABSTRACT

In this paper, we consider the problem of cluster separability in a minimum distance partition based on the squared Euclidean distance. We give a characterization of a well-separated partition and provide an operational criterion that gives the possibility to measure the quality of cluster separability in a partition. Especially, the analysis of cluster separability in a partition is illustrated by implementation of the k-means algorithm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Clustering or grouping a set of data points into conceptually meaningful clusters is a well-studied problem in recent literature [2,3,9,10,18,20,22,27], and it has practical importance in a wide variety of applications such as computer vision, signal-image-video analysis, multimedia, networks, biology, medicine, geology, psychology, business, politics and other social sciences.

Let $I = \{1, \dots, m\}$ and $J = \{1, \dots, k\}$. A partition of the set $\mathcal{A} = \{a_i \in \mathbb{R}^n : i \in I\}$ into k disjoint subsets $\pi_1, \dots, \pi_k, 1 \le k \le m$, such that

$$\bigcup_{i=1}^{k} \pi_i = \mathcal{A}, \quad \pi_r \cap \pi_s = \emptyset, \quad r \neq s, \quad |\pi_j| \geqslant 1, \quad \forall r, s, j \in J, \tag{1}$$

will be denoted by $\Pi = \{\pi_1, \dots, \pi_k\}$ and the set of all such partitions by $\mathcal{P}(\mathcal{A}, k)$. The elements π_1, \dots, π_k of the partition Π are called *clusters in* \mathbb{R}^n .

Any function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+, \ \mathbb{R}_+ := [0, +\infty)$, with the following property

E-mail addresses: ksabo@mathos.hr (K. Sabo), scitowsk@mathos.hr (R. Scitovski).

^{*} Corresponding author.

$$(\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n) \quad d(x,y) \geqslant 0 \quad \text{and} \quad d(x,y) = 0 \Longleftrightarrow x = y.$$

is called a distance-like function (see, e.g., [10,27]). Let $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$, be a distance-like function. Then for each cluster $\pi_i \in \Pi$ its center c_i is defined by

$$c_j = c(\pi_j) := \underset{x \in \text{conv } \pi_j}{\text{arg min}} \sum_{a_i \in \pi_i} d(x, a_i), \tag{2}$$

where $\operatorname{conv} \pi_j$ denotes the convex hull of the cluster π_j . It is said that the partition $\Pi^{\star} \in \mathcal{P}(\mathcal{A}, k)$ is a globally optimal k-partition if

$$\Pi^{\star} = \underset{\Pi \in \mathcal{P}(\mathcal{A},k)}{\operatorname{arg\,min}} \, \mathcal{F}(\Pi), \quad \mathcal{F}(\Pi) = \sum_{i=1}^{k} \sum_{a_i \in \pi_i} d(c_i, a_i), \tag{3}$$

where $\mathcal{F}: \mathcal{P}(\mathcal{A}, k) \to \mathbb{R}_+$ is the objective function.

Conversely, for a given set of different points $z_1, \ldots, z_k \in \mathbb{R}^n$, by applying the *minimum distance principle* (see, e.g., [10,24]), one can define the partition $\Pi = \{\pi(z_1), \ldots, \pi(z_k)\}$,

$$\pi(z_i) = \{ a \in \mathcal{A} : d(z_i, a) \leqslant d(z_s, a), \ \forall s = 1, \dots, k \}, \quad j \in J,$$

where a tie-breaker rule is needed in case of equality.

Therefore, the problem of finding an optimal partition of the set A can be reduced to the following optimization problem:

$$\underset{z_1,\ldots,z_k\in\mathbb{R}^n}{\arg\min}\,F(z_1,\ldots,z_k),\quad F(z_1,\ldots,z_k)=\sum_{i=1}^m\underset{1\leqslant j\leqslant k}{\min}\,d(z_j,a_i). \tag{5}$$

Optimization problems (3) and (5) are equivalent [24]. Global optimization problem (5) can also be found in the literature as a *center-based clustering problem* [9,12,27]. If the *squared Euclidean distance* $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$, $d(x,y) = \|x-y\|^2$ is used, the function F from (5) becomes a standard k-means objective function. The objective function $F: \mathbb{R}^{kn} \to \mathbb{R}_+$ defined by (5) can have a large number of independent variables (the number of clusters in the partition multiplied by the dimension of data points: $k \cdot n$), it does not have to be either convex or differentiable and usually it has several local minima. Hence, this becomes a complex global optimization problem.

Furthermore, suppose that $A \subset \mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$ is a given set. By using the *squared Euclidean distance* $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$, $d(x,y) = \|x-y\|^2 = \langle x-y, x-y \rangle$, where $\langle \cdot, \cdot \rangle$ is the standard inner product, we analyze internal separability of some partition Π of the set of data points A, i.e., we consider the following problem:

Let $A \subset \mathbb{R}^n$ be a set, d the squared Euclidean distance and $z_1, \ldots, z_k \in \mathbb{R}^n$ a set of mutually different points (assignment points) that determine the partition $\Pi = \{\pi(z_1), \ldots, \pi(z_k)\}$, where $\pi(z_j)$ are given by (4). The question is: How can the assignment points be changed such that the partition Π remains unchanged?

Especially, an open ball $B(\delta) = \{u \in \mathbb{R}^n : ||u|| < \delta\}$ of radius $\delta > 0$ is searched for, such that for an arbitrary set of assignment points $\{\zeta_1, \ldots, \zeta_k \in \mathbb{R}^n : \zeta_j \in z_j + B(\delta)\}$ the clusters $\pi(\zeta_j)$ and $\pi(z_j)$ are equal for all $j \in J$. The ball $B(\delta)$ is said to be a separability ball of the partition Π and the corresponding balls

$$z_i + B(\delta) := \{z_i + u : u \in B(\delta)\}, \quad j \in J,$$

will be called separability balls associated with assignment points z_1, \ldots, z_k .

Note that in this way separability balls for all clusters have the same radius δ . The problem could also be formulated such that separability balls are searched for each cluster separately.

There is a rich literature considering similar problems. Some of them will be discussed in detail in the next section, after the term cluster separability in a partition is defined and a characterization of a well-separated partition is given. The problem is first considered for the one-dimensional case, and then in detail for the *n*-dimensional case. In Section 3, cluster separability in a partition is illustrated by the implementation of the *k*-means algorithm. Finally, some conclusions are given in Section 4.

2. Cluster separability in a partition

Let $1 \le k \le m$, $I = \{1, ..., m\}$, $J = \{1, ..., k\}$, and let $A = \{a_i \in \mathbb{R}^n : i \in I\}$ be a given data set in \mathbb{R}^n . By using the squared Euclidean distance, for a given set of assignment points $z_1, ..., z_k \in \mathbb{R}^n$, according to the minimum distance principle, there is a partition $\Pi = \{\pi(z_1), ..., \pi(z_k)\}$ made up of clusters

$$\pi(z_i) = \{ a \in \mathcal{A} : ||z_i - a|| \le ||z_s - a||, \ s \in J \}, \quad j \in J.$$
(6)

Note that each cluster $\pi(z_j)$ depends on the neighboring clusters, and notation $\pi(z_j)$ implies that cluster $\pi(z_j)$ is associated to the center z_j . It is well-known (see, e.g., [10]) that it may happen that some of the clusters are empty sets or that some elements $a \in \mathcal{A}$ appear on the border of two or more clusters $\pi(z_1), \ldots, \pi(z_k)$ determined by assignment points z_1, \ldots, z_k

Download English Version:

https://daneshyari.com/en/article/393071

Download Persian Version:

https://daneshyari.com/article/393071

Daneshyari.com