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a b s t r a c t

Our interest is in time series data smoothing. We view this process as an aggregation of
previously observed values. We first discuss the features desired of a good smoothing oper-
ator. We particularly note the conflict that exists between our desire for minimal variance
and desire to use the freshest data. We describe a number of commonly used smoothing
techniques, moving average and exponential smoothing. We then consider the extension
of these methods to the case where the observations can have different credibility or
importances. Specifically we develop an extension of the exponential smoothing method
to the case where the observations can have different importance weights in the smoothing
process.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Time series data smoothing is a task that occurs in many applications and is pervasively used as a tool in for prediction or
forecasting [3,6] and learning in evolving systems [1]. Among the most popular methods used to implement this process are
moving average and exponential smoothing [4]. In this work we consider a variation of the smoothing problem in which all
the observations are not all valued the same, they may have different importances or credibility. Here we associate a weight
with each observation indicating its usefulness or importance in the smoothing process. Our objective here then is to extend
these smoothing methods, notably the exponential smoothing to handle this type of data.

2. Aspects of time series smoothing

In [9] we discussed some fundamental aspects of time series smoothing and averaging. In time series forecasting or pre-
diction we are interested in using a sequence of observations about some variable, xt for t = 1 to n, to predict a future value for
the variable. We are interested in obtaining an estimate of xn+1 based upon an aggregation of the earlier values. We denote
this aggregation as Agg (x1, . . ., xn). An important factor that determines the form for Agg depends on our assumption about
the underlying pattern generating the data. One common assumption, the one which shall initially use here, is that the
underlying variable a is almost constant, it maybe slowly varying, and we are observing xt = a + et where et is some random
error with mean zero and constant variance. More generality may be obtained if we consider a(t), however for our purposes
this not required. In this case we are using the observations x1, . . ., xn to obtain some estimate �a of a. We then use this esti-
mation of a as our predictor of xn+1. Here the estimated value of a, �a, and the estimate of xn+1 are the same. One approach to
obtaining �a is to use a mean aggregation. In this case �a ¼ Fðx1; . . . ; xnÞ ¼

Pn
j¼1ujxj where uj are a collection of weights such

that uj 2 [0, 1] and
Pn

j¼1uj ¼ 1. This provides an unbiased estimate of a. In the temporal environment this aggregation oper-
ation is often called smoothing [4]. The collection of the uj is referred to as the weighting vector.
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While on the surface this appears just like an ordinary application of a mean aggregation operator [2] there are a number
of features that are special about making these calculations in the framework of time series data. One is the repetitive nature
of the task. We are constantly getting new readings for xt and then using these to update our estimate for �a. In order to for-
mally deal with this sequential updation we shall sometimes find it convenient to use the term an to indicate our smoothed
value F(x1, . . ., xn). Thus at time n, an and �a are synonyms.

Another special feature of the time series environment is that while we are assuming that the underlying value a is fixed
it is often more realistic to allow for the possibility of slow drift. That is a more realistic assumption is that a is quasi-
constant.

As we shall subsequently see these two special features of the temporal environment will play an important role in the
determination of the weights, the uj.

The repetitive nature of the calculation of �a has two immediate implications. One is that it would be advantageous to
make the calculation of F(x1, . . ., xn) as simple as possible. In particular, if we could take advantage of prior calculations this
would help. We should note that while beneficial, in this age of great computational power and cheap memory this is not as
important as in the past. The second implication however is more significant. The repeated updation task requires that we
are going to implement many calculation of the form

Fðx1; . . . ; xnÞ; Fða1; . . . ; an; xnþ1Þ; Fða1; . . . ; anþ1; anþ2Þ

where each of these is a mean aggregation. Since each of these aggregations will involve a different number of arguments we
shall be using weighting vectors of different dimensions. Since it is well known [5] that the mean operator is not generally
associative this implies there is no mandated manner for performing the aggregation as we add values. However, it is impor-
tant that all of these calculations be done in some kind of consistent manner. Here then the issue of consistently calculating �a
for different values of n involves the appropriate determination of weighting vectors of growing dimensions.

The earlier mentioned feature of time series data, the allowance for possible variation in the underlying value a being
estimated, has as an implication that not all observations should be treated the same. In particular more weight should
be assigned to the most recent observations. Thus we have a preference for weighting vectors such that uj P ui for j > i.

One characterizing feature of this smoothing operation is the average age of the data being used in the aggregation. If n is
the current time then the age of the piece of data xt is calculated as AGE(t) = n � t. Using this we get as the average of the data
being used in the aggregation

AGE ¼
Pn

j¼1uj AGEðjÞPn
j¼1uj

Since
Pn

j¼1uj ¼ 1 then AGE ¼
Pn

j¼1ujðn� jÞ. This can also be expressed as AGE ¼ n�
Pn

j¼1juj.
As we previously indicated we have some preference for fresh or youthful data. We can of course, have the freshest data if

we select un = 1 and have all other uj equal zero. In this case AGE ¼ 0. However there is some other conflicting objective that
we must consider.

As we noted our observations are of the form xt = a + et where et is assumed to be a random noise component with mean
zero and variance r2. Each piece of data has a variance of r2. Since our objective is to find a good estimate for a, we desire to
have a small variance in our estimate of �a.

With

�a ¼
Xn

t¼1

ujxt ¼
Xn

t¼1

utðaþ etÞ

where
Pn

j¼1uj ¼ 1 we get as our expected value, Ex½�a� ¼ a, thus this is an unbiased estimate. To find the variance of our esti-
mate we calculate

Varð�aÞ ¼ Ex

Xn

t¼1

ðutxt � aÞ2
" #

where Ex denote the expected value operator. Under the assumption that the observations are uncorrelated we obtain

Varð�aÞ ¼
Xn

t¼1

u2
t r

2 ¼ r2
Xn

t¼1

u2
t

One objective is to minimize the value of the variance. Since we have no control over the value of r2 this task reduces to
the problem of trying to make

Pn
t¼1u2

t as small as possible. In the following we shall denote HðuÞ ¼
Pn

t¼1u2
t . Thus we want to

get a small value for H(u) where we are constrained by the conditions that
Pn

j¼1uj ¼ 1 and uj 2 [0, 1].
We now see that our objective in obtaining the weights is to try to find weights satisfying uj 2 [0, 1] and

Pn
j¼1uj ¼ 1 that

make HðuÞ ¼
Pn

t¼1u2
t as small as possible and while also making AGE ¼

Pn
j¼1ujðn� jÞ small. As we shall see the goals of trying

to make H (u) and AGE small are essentially conflicting under the conditions that
Pn

j¼1uj ¼ 1 and uj 2 [0, 1].
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