Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

This paper studies covering-based rough sets by means of characteristic functions of sets.

We consider covering-based rough sets from both constructive and axiomatic approaches.

The relationship among four types of covering-based rough sets is discussed. We also out-

line the topologies induced by different covering approximations.

The relationship among different covering approximations

Guilong Liu*

School of Information Science, Beijing Language and Culture University, Beijing 100083, China

ARTICLE INFO

ABSTRACT

Article history: Received 8 April 2011 Received in revised form 10 July 2013 Accepted 27 July 2013 Available online 2 August 2013

Keywords: Binary relation Covering Approximation Rough set Neighborhood

1. Introduction

Pawlak's rough set theory [9–11] is based on equivalence relations. However, the requirement of the equivalence relations appears to be a very restrictive condition that may limit the application of rough sets. To address this issue, many authors have generalized the concept of rough sets to arbitrary binary relations [3,15,19,20,23], fuzzy relations [1,2], and coverings [6,14,22,25,26]. Zakowski [22] first established covering-based rough set theory by exploiting coverings of a universal set. Covering-based rough set theory, which is an important generalization of classical rough set theory, is also a model with promising potential for application to data analysis. Zhu and Wang [26] studied many types of covering-based rough sets, while Qin et al. [12] proposed five pairs of dual covering approximations using the notion of a neighborhood. Yun et al. [21] also studied covering-based rough sets and solved an open problem identified by Zhu and Wang [26].

The motivation of the paper is to consider the following problem: What is the relationship among covering approximations $C_i(i = 3-6)$? This paper considers the covering approximations proposed by Qin et al. [12]. Using a constructive approach, we obtain the relationship between approximations C_3 , C_4 , C_5 , and C_6 . We show that $\overline{C_4}$ is a composition of $\underline{C_3}$ and $\overline{C_3}$ and that $\overline{C_5}$ is a composition of $\overline{C_6}$ and $\overline{C_3}$. We also give characterizations of covering upper approximations $\overline{C_i}(1 = 2-6)$. We further investigate the conditions of neighborhoods, { $N(x)|x \in U$ }, forming a partition of U. This paper simplifies the study of covering approximations, C_i (i = 3-6).

The paper is arranged as follows. Section 2 reviews the main ideas of generalized rough set and covering approximations. Section 3 gives the properties of approximations $C_i(i = 1-6)$. Section 4 studies axiomatization of covering upper approximations $C_i(i = 1-6)$, while Section 5 considers the conditions of the neighborhoods, $\{N(x)|x \in U\}$, forming a partition of *U*. Section 6 discusses topologies induced by $C_i(i = 3-6)$. Finally, Section 7 concludes the paper.

* Tel.: +86 010 82387845.

E-mail address: liuguilong@blcu.edu.cn

© 2013 Elsevier Inc. All rights reserved.

^{0020-0255/\$ -} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ins.2013.07.019

2. Generalized rough sets and covering approximations

Let *U* be a non-empty set of objects called the universal set and P(U) be the power set of *U*. Suppose that *R* is an arbitrary relation on *U*. Recall that the left and right *R*-relative sets of an element *x* in *U* are defined as

$$l_R(x) = \{y | y \in U, yRx\} \text{ and } r_R(x) = \{y | y \in U, xRy\}$$

respectively. By replacing equivalence classes with right *R*-relative sets, Yao [18] defined the operators <u>*R*</u> and \overline{R} from P(U) to itself as

$$\underline{R}(X) = \{x | r_R(x) \subseteq X\} \text{ and } \overline{R}(X) = \{x | r_R(x) \cap X \neq \emptyset\}.$$

<u>*RX*</u> is called the lower approximation of *X* and $\overline{R}X$ the upper approximation of *X*. The pair ($\underline{R}X, \overline{R}X$) is referred to as a generalized rough set based on *R*.

Recall that if *X* is a subset of universal set *U*, the characteristic function λ_X of *X* is defined for each $x \in U$ as follows: $\lambda_X(x) = \begin{cases} 1, & x \in X \\ 0, & x \notin X \end{cases}$. Similarly, for any given binary relation *R* on *U*, for $x, y \in U$, $\lambda_R(x, y)$ is equal to 1 if *x*Ry and to 0 otherwise. The inner product of two subsets *X*, *Y* of *U*, denoted as (*X*, *Y*), is defined as (*X*, *Y*) = $\bigvee_{x \in U} (\lambda_X(x) \land \lambda_Y(x))$, where \land denotes the minimum and \lor the maximum.

Let *C* denote a covering of *U*. We call the ordered pair (*U*,*C*) a covering approximation space and $N(x) = \cap \{K | K \in C, x \in K\}$ the neighborhood of an element $x \in U$. Throughout this paper, for any given covering approximation space (*U*,*C*), the relation *R* on *U* is defined as $l_R(x) = N(x)$ for each $x \in U$. It is easily verified that *R* is reflexive and transitive. This paper considers six types of covering approximation operations defined as follows [12,14,21]:

(1) $\underline{C_1}(X) = \bigcup \{K | K \in C, K \subseteq X\}$ and $\overline{C_1}(X) = \bigcup \{K | K \in C, K \cap X \neq \emptyset\}$.

- (2) $\underline{C_2}(X) = \bigcup \{K | K \in C, K \subseteq X\}$ and $\overline{C_2}(X) = (C_2(X'))'$, where X' denotes the complement of X in U.
- (3) $\underline{C_3}(X) = \{x | N(x) \subseteq X\}$ and $\overline{C_3}(X) = \{x | N(x) \cap X \neq \emptyset\}.$
- (4) $\underline{C_4}(X) = \{x | \exists u \in N(x), N(u) \subseteq X\} \text{ and } \overline{C_4}(X) = \{x | \forall u(u \in N(x) \to N(u) \cap X \neq \emptyset)\}.$
- (5) $\underline{C_5}(X) = \{x | \forall u (x \in N(u) \to N(u) \subseteq X)\}$ and $\overline{C_5}(X) = \bigcup \{N(x) | N(x) \cap X \neq \emptyset\}.$
- (6) $\underline{C_6}(X) = \{x | \forall u (x \in N(u) \rightarrow u \in X)\}$ and $\overline{C_6}(X) = \bigcup_{x \in X} N(x)$.

3. Properties of covering approximations

Qin et al. [12] proposed five pairs of dual approximations, with C_3 , C_4 , C_5 , and C_6 defined by means of neighborhood N(x). It is natural to ask the question: Is there a close relationship among C_3 , C_4 , C_5 , and C_6 ? The following theorem answers this question.

Theorem 3.1. Let (U,C) be a given covering approximation space.

- (1) If we define a binary relation S on U through $l_S(x) = \bigcup \{K | K \in C, x \in K\}$ for each $x \in U$, then S is reflexive and symmetric.
- (2) $\overline{C_1}(X) = \overline{SX}$ for each subset $X \subseteq U$ [8].
- (3) $\overline{C_2}X = \cap \{K' | K \in C, X \subseteq K'\}.$
- (4) $\{N(x)|x \in U\}$ forms a partition of U if and only if R is symmetric.
- (5) $\underline{C_3}(X) = \underline{R^{-1}X}$ and $\overline{C_3}(X) = R^{-1}X$ for each $\underline{X} \subseteq U$, where R^{-1} denotes the inverse of R.
- (6) $C_4(X) = R^{-1}(\underline{R^{-1}}(X))$ and $\overline{C_4}(X) = \underline{R^{-1}}(R^{-1}(X))$ for each $X \in P(U)$.
- (7) $\underline{C_5}(X) = \underline{R}(\underline{R^{-1}}(X))$ and $\overline{C_5}(X) = \overline{R}(\underline{R^{-1}}(X))$.
- (8) $\underline{C_6}(X) = \underline{R} \underline{X}$ and $\overline{C_6}(X) = \overline{R} X$ for each $X \subseteq U$ [8].

Proof

- (4) By the definition of relation R, { $N(x)|x \in U$ } forms a partition of U if and only if R is an equivalence relation, implying that R is symmetric.
- (6) $\overline{C_4}(\underline{X}) = \{x | \forall u(u \in \underline{N}(x) \to N(u) \cap X \neq \emptyset)\} = \{x | \forall u(\underline{u} \in l_R(x) \to \underline{l_R(u)} \cap X \neq \emptyset)\} = \{x | \forall u \in l_R(x), u \in \overline{R^{-1}}(X)\} = \{x | l_R(x) \in \overline{R^{-1}}(X)\} = \{x | l_R(x) \to \underline{R^{-1}}(X)\} = \{x | l_R($
- (7) Because $\overline{C_5}\{y\} = \bigcup \{N(x) | y \in N(x)\} = \bigcup \{\overline{l_R}(x) | y \in \overline{l_R}(x)\} = \bigcup \{l_R(x) | yRx\} = \bigcup_{x \in r_R(y)} l_R(x) = \overline{R}r_R(y) = \overline{R}\overline{R^{-1}}(\{y\})$ for each $y \in U$, we have $\overline{C_5}(X) = \bigcup_{y \in X} \overline{C_5}\{y\} = \bigcup_{y \in X} \overline{R}(R^{-1}(\{y\})) = \overline{R}(R^{-1}(X))$ for each $X \in P(U)$. By duality, $\underline{C_5}(X) = \underline{R}(R^{-1}(X))$. We omit the proof of the remaining parts because these can be proven in a similar way. \Box

Theorem 3.1 tells us that $\overline{C_4}$ is a composition of $\underline{C_3}$ and $\overline{C_3}$, and $\overline{C_5}$ is a composition of $\overline{C_6}$ and $\overline{C_3}$.

Download English Version:

https://daneshyari.com/en/article/393111

Download Persian Version:

https://daneshyari.com/article/393111

Daneshyari.com