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a b s t r a c t

Recently, by exploring the column nonlocal similarity prior among the sparse representa-
tion coefficients, the column nonlocal similarity sparse representation models for solving
the ill-posed single image super-resolution (SISR) problem are attracting more and more
attention. However, these conventional models consider only the prior among nonlocal
similar sparse representation coefficients, and fail to consider the prior among all entries
(or rows) of the sparse representation coefficient. Hence the modeling capability may be
limited. In fact, if a cluster of similar representation coefficients is rearranged into a matrix
in the sparse representation coefficient space, the nonlocal similarity priors exist both
among columns and rows. Using the row nonlocal similarity prior, a row nonlocal similar-
ity regularization term with l1-norm constraint is explored. By introducing it to the conven-
tional column nonlocal similarity sparse representation model, we present a dual-sparsity
regularized sparse representation (DSRSR) model. A surrogate function based iterative
shrinkage algorithm is introduced to effectively solve the proposed model. Extensive
experiments on SISR demonstrate that the presented model can effectively reconstruct
the edge structures and suppress the noise, achieving convincing improvement over many
state-of-the-art example-based methods in terms of PSNR, SSIM and visual quality.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Super-resolution (SR) is a very active research topic in the image processing community. Many tasks, such as remote
sensing, medical diagnostic and consumer electronics, rely on high quality images for reliable and accurate analysis as well
as prediction. However, in many practical situations, due to the inherent limitations of the optical system or other factors,
the observed images are often of low resolution (LR), thus limiting the subsequent tasks based on them [24]. Image SR aims
to reconstruct a high resolution (HR) image from a single or a set of LR observations, which is termed as single image SR and
multiimage SR, respectively [35].

The focus of this paper is single image super-resolution (SISR). For an observed image y, the problem of SISR can be
generally formulated by [6,33,11,35,9,10]

y ¼ DHxþ v ; ð1Þ

where x and y are lexicographically stacked representations of the original image and the observed image, respectively. H is a
blurring matrix and D is a downsampling matrix. v is a noise vector.
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To cope with the ill-posed nature of the SISR problem, the regularization-based techniques have been widely used to reg-
ularize the solution space [6,23,3,38]. In [6], The classic iterative back-projection technique was proposed to reconstructs x

by minimizing x̂ ¼ arg minx ky� DHxk2
2

n o
. However, the solution to this l2-norm optimization is generally not unique, and

hence the reconstructed image tends to produce visual artifacts, such as ringing, aliasing and blocking artifacts. To further
refine the solution space, some effective regularization terms of image x, denoted by R(x), can be introduced to regularize the

solution: x̂ ¼ arg minx ky� DHxk2
2 þ k � RðxÞ

n o
, where k is a Lagrangian multiplier parameter, which balances the tradeoff

between the regularization term R(x) and likelihood term ky� DHxk2
2. One widely used regularization term is total variation

(TV) [23], which assumes that natural images have small first derivatives. Mathematically, it is set as R(x) = jrxj1, where
jrxj1 is the l1-norm of the first-order derivative of x. But, it favors piecewise constant image structures, and hence tends
to smooth much the image details. To improve the classic TV regularization term, other regularization terms, such as the
adaptive TV regularization term [3] and the nonlocal TV regularization term [28], have also been developed.

Another class of the SISR technique is the example-based techniques [12,2,15,18,33,14,35,17,31,34,36,4,7,26,37], which
assume that high-frequency details lost in a single LR image can be predicted from a training data set. In terms of the exam-
ple-based technique, the sparse representation techniques [33,11,21,9,10,20,19,25] have attracted more and more attention
in recent years. These techniques assume that the image is sparse in some domain spanned by a set of bases or a dictionary of
atoms. Here the sparsity prior means that the image x can be well approximated by a linear combination of selected atoms
from an over-complete dictionary matrix W, i.e., x �Ws, and most of the entries in the coefficient vector s are zero or close to
zero. Mathematically, the sparsity regularization term can be set as R(s) = ksk0, where k k0 is a pseudo norm that counts the
number of non-zero entries in s. Since l0-norm optimization is NP-hard problem [29], the l1-norm sparsity regularization
term as the closest convex relaxation, R(s) = ksk1, is widely adopted [33,11,9,10]. It leads to the following Lagrangian form:

sy ¼ arg minsfky� DHWsk2
2 þ kksk1g, where k is a constant controlling the sparsity and the approximation error. The l1-norm

optimization problem can be solved by techniques such as the surrogate function based iterative shrinkage algorithm [8] and
proximal algorithms [5]. Given a single LR image y, the coefficient sy can be solved with the l1-norm sparsity regularization
term and the dictionary W, and then the desired HR image can be reconstructed by x̂ ¼ Wsy. Clearly, it is expected that the
coefficient sy could be close enough to the true coefficient of the original image x. Due to the degradation of the observed
image, however, it is a challenge to obtain the true coefficient from the degraded image y. Using only the local l1-norm spar-
sity regularization term R(s) = ksk1 may not lead to an enough accurate image SR [10]. Recently, the nonlocal similarity prior
among the sparse representation coefficients (or called as the column nonlocal similarity prior) as another prior has been
introduced into sparse representation model for better image SR performance [11,21,9,10]. This prior assumes that the coef-
ficient s can be well approximated by its nonlocal similar coefficients in the sparse representation coefficient space. Math-
ematically, the column nonlocal similarity regularization term can be defined as R(s) = ks � bkp, where b is denoted as the
weighted average of nonlocal similar coefficients associated with the coefficient s, p is typically chosen as 1 or 2 [11,21,9,10].

Although the column nonlocal similarity sparse representation models consider the relationship among the sparse
representation coefficients, they fail to consider the relationship among all entries (or rows) of the sparse representation
coefficient. Hence the modeling capability may be limited. In [39], the authors stated that if a cluster of similar image patches
is rearranged to form a matrix in image patch space, the nonlocal similarity priors exist both among columns and rows. In
[21,9], the authors stated that the nonlocal similar image patches have similar sparse representation coefficients. Namely, if a
cluster of similar representation coefficients is rearranged into a matrix in the sparse representation coefficient space, the
nonlocal similarity priors exist both among columns and rows as well.

In this paper, we present a dual-sparsity regularized sparse representation (DSRSR) model. First, using the row nonlocal
similarity prior, a row nonlocal similarity regularization term with l1-norm constraint is explored. Second, this regularization
term is introduced to the conventional column nonlocal similarity sparse representation model to form the DSRSR model.
The surrogate function based iterative shrinkage algorithm [8] is employed to effectively solve the presented DSRSR model.
Extensive experiments on SISR demonstrate that the presented model can effectively reconstruct the edge structures and
suppress the noise, achieving convincing improvement over many state-of-the-art example-based methods in terms of Peak
Signal to Noise Ratio (PSNR) [30], Structural Similarity (SSIM) [13] and visual quality assessment.

The rest of the paper is organized as follows: Section 2 describes the details of the presented DSRSR model for SISR.
Section 3 provides the iterative shrinkage algorithm for solving the DSRSR model. Section 4 presents the extensive experi-
mental results together with relevant discussions and Section 5 concludes the paper.

2. The presented DSRSR model

For the ease of description, we introduce some denotations that will be used in the following content. Let x 2 RN be an
image vector, and xi = Pi x be the ith patch (size:

ffiffiffi
n
p
�

ffiffiffi
n
p

) vector of x, where Pi 2 Rn�N is a matrix extracting patch xi from
x. For patch xi, suppose that a dictionary W 2 Rn�m is selected for it. Then, xi can be approximated as xi �Wsx,i by

sx;i ¼ arg mins kxi �Wsik2
2 þ kksik1

n o
, where sx,i 2 Rm. The whole image x can be reconstructed by averaging all of the recon-

structed patches xi. Mathematically, it can be written as [11,10]
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