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a b s t r a c t

Evolutionary robotics is a promising approach to autonomously synthesize machines with
abilities that resemble those of animals, but the field suffers from a lack of strong founda-
tions. In particular, evolutionary systems are currently assessed solely by the fitness score
their evolved artifacts can achieve for a specific task, whereas such fitness-based compar-
isons provide limited insights about how the same system would evaluate on different
tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages
to the machine, or in new situations). To counter these limitations, we introduce the con-
cept of ‘‘evolvability signatures’’, which picture the post-mutation statistical distribution of
both behavior diversity (how different are the robot behaviors after a mutation?) and fit-
ness values (how different is the fitness after a mutation?). We tested the relevance of this
concept by evolving controllers for hexapod robot locomotion using five different geno-
type-to-phenotype mappings (direct encoding, generative encoding of open-loop and
closed-loop central pattern generators, generative encoding of neural networks, and sin-
gle-unit pattern generators (SUPG)). We observed a predictive relationship between the
evolvability signature of each encoding and the number of generations required by hexa-
pods to adapt from incurred damages. Our study also reveals that, across the five investi-
gated encodings, the SUPG scheme achieved the best evolvability signature, and was
always foremost in recovering an effective gait following robot damages. Overall, our
evolvability signatures neatly complement existing task-performance benchmarks, and
pave the way for stronger foundations for research in evolutionary robotics.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Evolutionary robotics (ER) is a promising approach to achieve one of the prominent long-term goals of artificial intelli-
gence research: creating machines with the adaptive and cognitive abilities of animals. Since the eighties, the ER field has
made amazing progress to both design sophisticated artifacts and to endow machines with impressive adaptive abilities.
For instance, it allows for the automated construction of modular, three-dimensional, physically locomoting robots, [48],
to synthesize neural networks to control robot behaviors (e.g., [69,72,84,99]), and discover a multitude of walking gaits
for multilegged robots following unforeseen mechanical damages [10,22,66]. However, even the most advanced evolved
artifacts are still far behind the state of the art in mainstream robotics [11,59]: conventionally engineered robots are capable
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of operating successfully in a wide variety of indoor and outdoor environments (e.g., locomotion with the BigDog quadruped
robot, [91]), whereas the best evolved robots are still only capable of simplistic behaviors (e.g., walking in a straight line on a
flat terrain, or avoiding obstacles in an enclosed indoor arena). To progress further, ER needs to go beyond the mere ‘‘stamp
collecting’’ of proofs of concept, evident in the infancy of many scientific fields [44], and build strong theoretical and method-
ological foundations for future research. The objective of the present study is to move in this direction.

In most ER studies, fitness comparison is the main instrument used to compare different evolutionary systems and
assess their progress. Such a benchmark-based comparative approach has led to incremental improvements in the robot’s
performance in specific tasks (e.g., for multilegged robot locomotion, the inclusion of evolved gaits on the commercial
release of Sony’s AIBO [50,112], and the progressive improvements in walking speed of the QuadraBot [70,118]), and is
sufficient if excelling at the given function is the ultimate goal for the robot. Nonetheless, if the evaluated task is treated
as a tool to compare different evolutionary systems, and as a stepping stone to harder problems, then a mere comparison of
performance does not suffice. This is because such a methodology of comparison only provides a very limited amount of
information about the behavior of the system. In particular, it does not provide any insights on, (i) how efficiently does the
evolutionary process explore the search space (e.g., can it also lead to solutions for other similar tasks, or is it biased to the
type of solutions useful only for a very specific task?), and (ii) what capabilities are provided to the evolved population to
respond to novel situations (e.g., an unexpected breakage of the multilegged robot’s limbs, or changes to its weight dis-
tribution). Furthermore, while adaptive evolutionary systems utilize a variety of population-diversity maintenance meth-
ods to operate in changing environments [57], they are mostly concerned with numerical optimization problems (e.g.,
[81]), and constrained to fitness-based indices to evaluate available approaches [115]. In summary, there is a need for addi-
tional metrics when comparing evolutionary systems, especially if one is interested in the adaptive abilities provided by
evolution.

In benchmark-based comparative approaches, the fitness value in an evolutionary system is often used as a proxy for
the evolvability provided by the system [15,43,48,65]—the capacity of the evolved population to rapidly adapt to novel
environments [51]. However, such a fitness-based proxy provides little information on the potential of the evolutionary
system to generate novel phenotypes, and consequently rapidly adapt to new, untested environments. While fitness land-
scape models can provide interesting insights on search difficulty in the Genotype-to-Fitness map [90,116], the models 3D
landscape can be deceptive when analyzing highly multidimensional genotypes [39,60,78]. Additionally, in NK fitness
landscape models [61,110], the value of K that controls the degree of epistasis is not easily transferable to more complex
and open-ended Genotype-to-Fitness mappings. Also, the individual solutions in all these models are positioned in the
landscape solely based on their measured fitness. In the present paper, to counter the limitations of the fitness measure,
we introduce a new evolvability metric that features both the quality and quantity of phenotypic variation following
genetic change. With this new metric, we can visualize evolvability in the behavior-diversity/performance space and pre-
dict the performance of the population in previously untested environments.1 Such predictive insights on the adaptive
characteristics of evolved individuals is particularly important, since it is difficult if not impossible to consider and evaluate
a priori every possible scenario the robot may encounter during its operation. We employ our new approach to ‘‘signaturize’’
evolvability to compare many different encodings of controllers extracted from the literature. Numerous encodings have
been proposed in ER, taking inspiration from natural developmental processes, in particular, to evolve control systems for
robots (e.g., [14,15,43,64,70,74,82]). Given the multitude of available encodings, it is crucial to compare them and understand
their differences, so that the ER community can focus on the most promising ones. In the selection of encodings investigated
in our study, both direct and generative schemes are considered. Direct encodings encompass a one-to-one mapping
between genes and phenotypic traits, and are the simplest form of encoding thus serving as a reference for comparison
(e.g., [66]). We also evaluate the more complex generative encodings characterized by a one-to-many mapping between
genes and phenotypic traits, i.e., a single gene describes several phenotypic traits [103,104]. These state of the art encodings
are expected to exploit geometric information of the robot morphology to generate regular and modular phenotypic patterns
(e.g., [19,82,105]).

Overall, we investigate five encodings for the classical ER problem of legged robot locomotion [10,15,18,19,43,50,
66,70,74,118]: (1) open-loop central pattern generator (CPG) evolved with a direct encoding, (2) open-loop CPG based on
non-linear oscillators [21], evolved with a Compositional Pattern Generator (CPPN) [104], (3) closed-loop CPG evolved with
a CPPN, (4) artificial neural network (ANN) evolved with CPPN, inspired by HyperNEAT [19,105], and (5) the recently intro-
duced single-unit pattern generator (SUPG) [82]. For all these encodings, the pertinent questions are the same: are these
encodings facilitating evolvability, and are the encoded individuals capable of adapting rapidly to novel situations?
Furthermore, does the inclusion of a sensory feedback mechanism improve the evolvability provided, and the adaptive
capabilities of the individual? To both answer these questions and evaluate the relevance of our measure of evolvability,
our experiments are divided into two phases: first, we compare the evolvability signature obtained with each encoding,
and consequently predict their adaptability to novel scenarios, then we evaluate the accuracy of our predictions by analyzing
the ability of each encoding to effectively deal with the new scenarios (here, when some of the robot’s legs are damaged).

1 A preliminary study on our approach to visualize evolvability is published in a conference paper [108].
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