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a b s t r a c t

Since simulations of classical artificial neural networks (CANNs) run on classical comput-
ers, the massive parallel processing speed advantage of a neural network is lost. A quantum
computer is a computation device that makes direct use of quantum–mechanical phenom-
ena while large-scale quantum computers will be able to solve certain problems much
quicker than any classical computer using the best currently known algorithms. Combining
the advantages of quantum computers and the idea of CANNs, we propose in this paper a
new type of neural networks, named a quantum artificial neural network (QANN), which is
presented as a system of interconnected ‘‘quantum neurons’’ which can compute quantum
states from input-quantum states by feeding information through the network and can be
simulated on quantum computers. To show the ability of approximation of a QANN, we
prove a universal approximation theorem (UAT) which reads every continuous mapping
that transforms n quantum states as a non-normalized quantum state can be uniformly
approximated by a QANN. The UAT implies that QANNs would suggest a potential comput-
ing tool for dealing with quantum information. For instance, we prove that the state of a
quantum system driven by a time-dependent Hamiltonian can be approximated uniformly
by a QANN. This provides a possible way for finding approximate solution to a Schrödinger
equation with a time-dependent Hamiltonian.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In computer science and related fields, classical artificial neural networks (CANNs) are computational models and capable
of machine learning and pattern recognition. A CANN is usually presented as a system of interconnected ‘‘neurons’’ which
can compute values from inputs by feeding information through the network. Since simulations of artificial neural networks
run on classical computers, the massive parallel processing speed advantage of a neural network is lost [22]. Clearly, it would
be better to utilize the intrinsic physics of a physical system to perform the computation. Many efforts have been expended
in this direction, using systems ranging from nonlinear optical materials to proteins [15]. At the same time, many other
researchers have been exploring the possibility of building quantum computers [2,1,6]. By using arrays of coupled quantum
dot molecules, a quantum cellular automata has been posed in [11], which provides a valuable concrete example of quantum
computation in which a number of fundamental issues come to light. An architecture for a quantum neural computer has
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been proposed in [14] in light of the real time evolution of quantum dot molecules, and simulations have proved that such an
architecture can perform any classical logic gate, which can be used to calculate a purely quantum gate (a unitary matrix).

In this paper, we propose an analog of a CANN, named a quantum artificial neural network (QANN), and prove that every
continuous mapping that maps n quantum states as a non-normalized quantum state can be uniformly approximated by a
QANN. As an application, we show that the state of a quantum system driven by a time-dependent Hamiltonian can be
approximated uniformly by a QANN.

2. Construction of a quantum artificial neural network

Let Cd ¼ fðz1; z2; . . . ; zdÞT : zk 2 Cðk ¼ 1;2; . . . ; dÞg be the d-dimensional complex Hilbert space with the inner product

hxjyi ¼
Xd

k¼1

xkyk ð2:1Þ

for all elements jxi ¼ ðx1; x2; . . . ; xdÞT and jyi ¼ ðy1; y2; . . . ; ydÞ
T , where xk denotes the conjugate of the complex number xk and

hxj ¼ jxiy ¼ ðx1; x2; . . . ; xdÞ: ð2:2Þ

The norm induced by the inner product above reads

kjxik ¼ hxjxi1=2 ¼
Xd

k¼1

jxkj2
 !1=2

: ð2:3Þ

In quantum mechanics, a d-dimensional quantum system is described by the Hilbert space Cd and quantum states of the
system are described by unit vectors in Cd. Let SdðCÞ be the set of all quantum states of the quantum system Cd and define

Sn
dðCÞ ¼ fðjx1i; jx2i; . . . ; jxniÞT : jxki 2 SdðCÞðk ¼ 1;2; . . . ;nÞg; ð2:4Þ

which is clearly a closed bounded subset of the Hilbert space

ðCdÞn ¼ fðjx1i; jx2i; . . . ; jxniÞT : jxki 2 Cdðk ¼ 1;2; . . . ;nÞg � Cnd: ð2:5Þ

First, we define a mapping T : Sn
dðCÞ ! R2nd as

T jxi ¼ ðRejx1i; Imjx1i;Rejx2i; Imjx2i; . . . ;Rejxni; ImjxniÞT ð2:6Þ

for all jxi ¼ ðjx1i; jx2i; . . . ; jxniÞT 2 Sn
dðCÞ. We call T the realization mapping. Clearly, kT jxik ¼

ffiffiffi
n
p

for all jxi 2 Sn
dðCÞ. Put

Dn
2dðRÞ ¼ T ðS

n
dðCÞÞ � jyi 2 R2nd : kjyik ¼

ffiffiffi
n
p� �

:

Then Dn
2dðRÞ is a compact subset of R2nd, and T : Sn

dðCÞ ! Dn
2dðRÞ becomes a homeomorphism.

Next, we let rk : R! Rðk ¼ 1;2; . . . ;MÞ be M real-valued functions. For real numbers aðiÞj;k; h
ðiÞ
j;kði ¼ 1;2;

j ¼ 1;2; . . . ;N; k ¼ 1;2; . . . ;MÞ and vectors jwðiÞj;kiði ¼ 1;2; j ¼ 1;2; . . . ;N; k ¼ 1;2; . . . ;MÞ in R2nd, we define a mapping

Qk : Sn
dðCÞ ! C as follows:

QkðjxiÞ ¼
XN

j¼1

að1Þj;k rkðhwð1Þj;k jT jxi þ hð1Þj;k Þ þ iað2Þj;k rkðhwð2Þj;k jT jxi þ hð2Þj;k Þ
� �

ð2:7Þ

for all jxi 2 Sn
dðCÞ where hwðiÞj jT jxi denotes the inner product of jwðiÞj i and T jxi.

Last, we define Q : Sn
dðCÞ ! CM as

QðjxiÞ ¼ ðQ1ðjxiÞ;Q2ðjxiÞ; . . . ;QMðjxiÞÞT ð2:8Þ

for all jxi 2 Sn
dðCÞ. We call such a mapping Q a quantum artificial neural network (QANN).

If we use fje1i; je2i; . . . ; jeMig to denote the canonical basis for CM , then the QANN above can be rewritten as

QðjxiÞ ¼
XM

k¼1

XN

j¼1

að1Þj;k rkðhwð1Þj;k jT jxi þ hð1Þj;k Þ þ iað2Þj;k rkðhwð2Þj;k jT jxi þ hð2Þj;k Þ
� �

jeki: ð2:9Þ

Put

yðiÞj;k ¼ rk

Xn

t¼1

hwðiÞj;kðtÞjT jxti þ hðiÞj;k

 !
; jaðiÞk i ¼

XN

j¼1

aðiÞj;kyðiÞj;kjeki:

Then a QANN can be illustrated by Figs. 1 and 2 below.
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