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the objectives in terms of the conflict among them, we aim to separate the multiobjective
optimization into several subproblems in such a way that each of them contains the infor-
mation to preserve as much as possible the structure of the original problem. We imple-
ment this framework by performing ranking and parent selection independently in each
subspace. Our experimental results show that the proposed conflict-based partition strat-
egy outperforms a similar algorithm in a test problem with independent groups of objec-
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Space partitioning tives. In addition, the new strategy achieves a better convergence and distribution than
Objective conflict that produced by a strategy that creates subspaces at random. In problems in which the
Objective correlation degree of conflict among the objectives is significantly different, the conflict-based strategy

presents a better performance.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Since the first implementation of a Multiobjective Evolutionary Algorithm (MOEA) in the mid 1980s [37], a wide variety
of new MOEAs have been proposed, gradually improving in both their effectiveness and efficiency to solve Multiobjetive
Optimization Problems (MOPs) [9]. However, until recently, most of these algorithms had been evaluated and applied to
problems with only two or three objectives, in spite of the fact that many real-world problems have more than three objec-
tives (e.g., see [18,25,39]).

Recent experimental [23,42,32,34] and analytical [40,27] studies have shown that MOEAs based on Pareto optimality [31]
scale poorly when the number of objectives is increased. Although some scalability issues are known to mainly affect Pareto-
based MOEAs (see e.g., [27,16,26]), optimization problems with a high number of objectives (also known as many-objective
problems) introduce some difficulties common to any other multiobjective optimizer (e.g., visualization of the Pareto front).
Three of the most serious difficulties are the following: (i) Deterioration of the search ability because the proportion of non-
dominated solutions in a population increases rapidly with the number of objectives [16]. As a consequence, in many-objec-
tive problems, the selection of solutions is carried out almost at random or guided by diversity criteria only. (ii) The number
of points required to achieve a representative sample of a Pareto front increases exponentially with the number of objectives.
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(iii) The visualization of the Pareto front is more complicated since with more than three objectives it is not possible to plot
the Pareto front as usual. This is a serious problem since visualization plays a key role for a proper decision making.
Currently, there are three main approaches to solve many-objective problems, namely:

1. Adopt or propose an optimality relation that yields a solution ordering finer than that yielded by Pareto optimality.
Among these alternative relations we can find k-optimality [16], preference order ranking [14], and a method that con-
trols the dominance area [35]. Besides providing a richer ordering of the solutions, these relations obtain an optimal set
which is a subset of the Pareto optimal set. Therefore, these techniques can be used as a partial remedy for the first and
second issues of the previous enumeration.

2. Reduce the number of objectives of the problem during the search process [6,30] or, a posteriori, in the decision making
process [36,4,29]. The main goal of this kind of reduction techniques is to identify the redundant objectives (or redundant
to some degree) in order to discard them. A redundant objective is one that can be removed without changing the dom-
inance relation’ induced by the original objective set.

3. Incorporation of preference information interactively throughout the course of the optimization process [11,41,17]. By
incorporating preferences, the search can be focused on the decision maker’s region of interest, avoiding this way, the
evaluation of a huge number of solutions.

A general scheme for partitioning the objective space into several subspaces in order to deal with many-objective prob-
lems was introduced in [3,2]. In that study we investigated the following three strategies to partition the objective space
in equally sized subspaces: random (objectives for each subspace are assigned at random), fixed (objectives for each sub-
space are assigned sequentially), and shift (at each generation, objectives in the partition are shifted one position to the
right). Here, we propose a new partition strategy that creates objective subspaces based on the analysis of the conflict
information obtained from the Pareto front approximation found by the underlying MOEA. Additionally, we introduce a
new version of the general partitioning scheme in order to improve the distribution along the Pareto front. By grouping
objectives in terms of the conflict among them, we aim to separate the MOP into several subproblems in such a way that
the union of these independent subproblems contains the information to preserve as much as possible the structure of the
original problem.

In order to evaluate the effectiveness of the new conflict-based partition strategy, we compare its performance against
different strategies. First, against a similar partition strategy proposed by Purshouse and Fleming [33] which is based on
the Kendall correlation. We also compared the new partitioning approach with the random strategy and the original
Non-dominated Sorting Genetic Algorithm II (NSGA-II). The experimental results show that the conflict-based strategy out-
perform the Kendall-based partitioning method. Additionally, the conflict-based and random partition strategies outperform
NSGA-II in all the test problems considered in this study. Regarding these two partition strategies, the conflict-based parti-
tion strategy achieves a better distribution of solutions than that achieved by the random strategy. In problems in which the
degree of conflict among pairs of objectives is different, the conflict-based strategy presents a better performance.

The remainder of this paper is structured in the following manner. The next section presents some basic concepts and the
notation adopted throughout the paper. Section 3 briefly describes the relevant research related to our work. Section 4 intro-
duces the new partition strategy based on conflict information. Section 5 presents an experimental analysis to evaluate the
effectiveness of the new partition strategy. Finally, we present our conclusions in Section 6.

2. Basic concepts and notation

Definition 1 (Multiobjective optimization problem). A Multiobjective Optimization Problem (MOP) is defined as:

Minimize £(X) = [ fi(%).£2(X), ... fu(®)]' )
subject to X € X.

The vector x € R" is formed by n decision variables representing the quantities for which values are to be chosen in the
optimization problem. The feasible set X C R" is implicitly determined by a set of equality and inequality constraints. The
vector function f : X — RM is composed of M > 2 scalar objective functions f; : R" — R (i = 1,...,M). In multiobjective opti-
mization, the sets R" and R are known as decision variable space and objective function space, respectively. The image of X
under the function f is a subset of the objective function space denoted by Z = f(X) and referred to as the feasible set in the
objective function space.

Definition 2 (Objective set ®). The objective set of a MOP is determined by the set @ = {f,f,,...,fu} containing the M
objective functions to be optimized.

! The dominance relation induced by a given set F of objectives is defined by <¢ = {(x,y)|Vf; € F : fi(x) < fi(y)}-
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