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a b s t r a c t

Moving least-squares method is investigated with samples drawn from unbounded
sampling processes. Convergence analysis is established by imposing incremental condi-
tions on moments of sample output and window width. Satisfied convergence rates are
derived by means of projection operator and some concentration inequalities.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the traditional setting of machine learning, the least-squares (LS) method is usually used to derive a suitable approx-
imation function with good generalization performance [2,6,15,17,23]. It is noteworthy that the LS method is a kind of global
approximate method, i.e., the learning samples commonly are regular or concentrated. In many practical machine learning
and engineering applications, a large number of regular or concentrated samples need to be learned, a few irregular or
scattered samples also need to be investigated because of their special usefulness [3,9,12,14]. For example, in geographical
contour drawing, it is important to derive a set of contours but the height is available only for some scattered data sample
points [14]. Therefore, it is vital to seek a suitable local approximation method to deal with scattered data.

It is widely recognized that the moving least-squares (MLS) method is an important local approximation method. After
McLain introduced the MLS method to approximate a function based on scattered data [14], motivated by various real appli-
cations including problems related to approximation theory, data smoothing, statistics and numerical analysis, this method
has been studied intensively in the literature of machine learning [9,12,13,19,20,22,25]. The MLS method is described briefly
as follows: given a compact set X # Rn, a continuous function u 2 CðXÞ is required to be reconstructed from its values
uðx1Þ; . . . ;uðxNÞ on scattered, distinct data points V ¼ fx1; . . . ; xNg. Then for any x 2 X, the approximate value f �ðxÞ of uðxÞ
is defined as follows:

f �ðxÞ ¼ arg min
f2P

1
N

XN

i¼1

xðx; xiÞðf ðxiÞ � uðxiÞÞ2
( )

;
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where P # CðXÞ is a finite dimensional subspace, usually spanned by polynomials, and x is a continuous weight function. In
short, the major advantage of MLS over LS is flexibility with weights decaying smoothly with the distance from the scattered
data points, resulting in a smooth approximation.

Currently, most error analysis results are obtained mainly under the standard boundedness assumption, which requires
that sample output labels should be bounded almost surely by some constant. At the same time, research effort has been
made to abandon this standard assumption by some relaxed conditions [2,7,16] or moment hypotheses [1,10,11,21]. Many
developments have been achieved in the research on regression concerning unbounded sampling [10,21]. However, it is
noticeable that previous research mainly focuses on LS regression. To the best of our knowledge, there is not an approxima-
tion performance analysis result about using the MLS method. In this paper, we discuss the generalization performance of
the MLS method with unbounded sampling.

We first recall the preliminaries about the regression problem. The framework of the regression problem is based on a
compact metric space X (input space) and label set Y ¼ R (output space). It is assumed that training samples
z ¼ fzi ¼ ðxi; yiÞg

m
i¼1 are drawn independently from an underlying probability distribution q on Z :¼ X � Y . In regression set-

ting, the aim of learning algorithms is to predict the output of future samples drawn according to the unknown probability
distribution q. The target function for learning is defined (e.g., [5,17,28]) by

fqðxÞ ¼
Z

Y
y dqðyjxÞ; x 2 X;

where qð�jxÞ is the conditional distribution of q at x 2 X.
In this paper, we consider the learning of the regression function fq by the MLS method with unbounded sampling. We

study the case when the hypothesis space H for learning is a finite dimensional subspace of CðXÞ, the space of all continuous
functions on X. The most common and important example of hypothesis space H is the space Pl of polynomials of degree at
most l.

The main purpose of this paper is to conduct sample error analysis relating the MLS method where sample outputs satisfy
the following moment hypothesis.

Moment hypothesis: There exist constants M P 1 and C > 0 such thatZ
Y
jyj‘ dqðyjxÞ 6 C‘!M‘; 8‘ 2 N; x 2 X: ð1Þ

The MLS method involves a hypothesis space H and an MLS weight function [19,20].

Definition 1. Let the hypothesis space H is a ~d-dimensional subspace of CðXÞ consisting of Lipschitz functions on X. The MLS
weight function U : Rn � Rn ! Rþ satisfies:

(a)
R

Rn Uðx; tÞdt ¼ 1 for each x 2 Rn,
(b) there exist some q > nþ 1; cq; ~cq > 0 such that

Uðx; tÞP cq; 8jx� tj 6 1;

and

jUðx; tÞj 6
~cq

ð1þ jx� tjÞq
; 8x; t 2 Rn: ð2Þ

Given a sample z ¼ fðxi; yiÞg
m
i¼1 2 Zm, a hypothesis space H and an MLS weight function U, we define the estimator fz of fq

in a pointwise way as

fzðxÞ ¼ fz;r;xðxÞ; x 2 X;

by the MLS method as follows:

fz;r;x ¼ arg min
f2H

1
m

Xm

i¼1

U
x
r
;
xi

r

� �
ðf ðxiÞ � yiÞ

2

( )
; ð3Þ

where r > 0 is a window width.
More information has been accumulated on the local approximation of fq by fz in the literature of statistics [8,18] and

machine learning [13,19,20,22], where the sample z is deterministic and well distributed. In learning theory, we are inter-
ested in bounding the error kfz � fqk2

L2
qX

and its convergence rates as m!1 which are used to measure the performance of
the learning algorithm. At this time, it is difficult for us to establish the convergence estimate of kfz � fqkL2

qX
directly with

unbounded sampling in terms of the previous analysis techniques and results (see [19,20]). To overcome this difficulty,
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