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a b s t r a c t

It is a NP-hard problem to optimize the objective function of hash-based similarity search
algorithms, such as Spectral Hashing and Self-Taught Hashing. To make the problem
solvable, existing methods have relaxed the constraints on hash codes from binary values
(discrete) to real values (continuous). Then eigenvalue decomposition was employed to
achieve the relaxed real solution. The main problem is that the signs of the relaxed contin-
uous solution are mixed. Such results may deviate severely from the true solution, which
has lead to significant semantic loss. Moreover, eigenvalue decomposition confronts singu-
larity problem when the dimension of the data is larger than the sample size. To address
these problems, we propose a novel method named Nonnegative Sparse Locality Preserving
Hashing (NSLPH). Nonnegative and sparse constraints are imposed for a more accurate
solution which preserves semantic information well. Then, we have applied nonnegative
quadratic programming and multiplicative updating to solve the optimization problem,
which successfully avoids the singularity problem of the eigenvalue decomposition. The
extensive experiments presented in this paper demonstrate that the proposed approach
outperforms the state-of-the-art algorithms.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The similarity search is one of the most primitive operations in machine learning, pattern recognition, and information
retrieval. It is also a crucial task in a lot of computer vision applications such as image clustering, object classification, multi-
media or cross-media retrieval [1,2]. Recently, the efficiency of the similarity search algorithms becomes a critical issue
because of the high dimensionality of the data which may incur ‘‘dimensionality curse’’. For objects in a low-dimensional
feature space, the similarity search can be implemented efficiently with pre-build space-partitioning index structures (such
as KD-tree [3]) or data-partitioning index structures (such as R-tree [4]). However, these methods are known to degrade
dramatically to the brute-force query with the increment of the dimension in practice.

Recent hashing methods have been actively studied to provide efficient solution for high-dimensional data. These hashing
techniques map similar objects into similar binary codes so that we can efficiently identify the approximate nearest neigh-
bors by looking up similar binary codes based on the Hamming distance. Generally, the performance of the hash-based
method significantly depends on the extent of the locality or the semantic preserving. That is to say, the hash codes of similar
objects should be close to each other while those of dissimilar objects should be far apart after mapping. One of the most
well-known hashing technique is the Locality Sensitive Hashing (LSH) [5]. Many researchers have proposed novel methods
to improve the performance of LSH, such as Kernelized Locality Sensitive Hashing (KLSH) [6], and Coherency Sensitive
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Hashing (CSH) [8]. However, these methods were data-oblivious, and the design of the hash functions does not take the geo-
metric structure of the objects into consideration, which might result in quite inefficient (or long) codes.

For the sake of more efficient codes, recent approaches endeavor to seek better data-aware hash functions via machine
learning. The Spectral Hashing (SpH) [9] and the Self-Taught Hashing (STH) [10] are regarded as the state-of-the-art methods
in this category. However, it is a NP-hard problem to optimize the objective function of these methods. To obtain an approx-
imate solution, the constraints on the hash codes were relaxed from binary to real. Then, the Laplacian Eigenvalue decom-
position (LapEig) [11] was employed to generate the relaxed real hash codes which deviate from the true binary solution.
Thus, these methods encounter semantic loss issue resulting from the relaxition of the constraints. Moreover, these methods
may confront singularity problem which results from the small sample problem. Some other excellent algorithms have been
proposed in references [12–15]. However, these algorithms also relaxed the constraints on the hash codes from binary to
real, which confront the same problem.

Recently, the sparsity and nonnegativity theory has been successfully used in the communities especially for face recog-
nition and object clustering [16–21]. The Nonnegative Matrix Factorization (NMF) [16] could obtain a nonnegative part-
based representation for each facial image, which was consistent with the cognition of the human brain. The implementation
of the method showed that the nonnegative constraints have made the solution of the spectral clustering much closer to the
ideal cluster indicator matrix [18]. The sparse constraints could well capture the intrinsic geometric (semantic) structure in
the data [17]. That is to say, both constrains can alleviate semantic loss.

Motivated by the above observations, we have proposed a novel method named nonnegative sparse locality preserving
hashing (NSLPH) which imposes the nonnegative and sparse constraints on Locality Preserving Projections (LPP)[22]. The
LPP was applied instead of the LapEig because the LPP is a linear approximation of the LapEig, which could be used for
out-of-sample data conveniently. The motivation of imposing nonnegative and sparse constraints is to make the relaxed
solution closer to the true binary solution. This method has three contributions which can be highlighted as follows:

� It first introduces the sparse and nonnegative constraints into hashing. The nonnegative and sparse constraints insure
that the solution is much closer to the ideal binary hash codes. Additionally, they can preserve intrinsic geometric
structure, which can alleviate semantic loss.

� Because of the nonnegative constraints, the objective function could not be solved by the LapEig as it had been done in
STH, SpH and LPP. Therefore, we have applied a novel method, the nonnegative quadratic programming [23] and
multiplicative update [24], to solve the optimization problem. Our method is not only efficient, but it also successfully
avoids the singularity problem which the LapEig might confront.

� In spite of locality preservation, we also consider the minimization of mapping error, which yields hash functions for
efficient mapping on out-of -sample data, making it suitable for similarity search. Besides, our method generates hash
function with good generalization ability, ensuring that the nearest neighbor search of the out-of-sample data in the
high dimensional space will yield similar results in the low dimensional space.

The remainder of this paper is organized as follow. In Section 2, we discuss the related work focusing on the recent hash-
ing methods and the sparse and nonnegative constraints. In Section 3, we present our method named Nonnegative Sparse
Locality Preserving Hashing (NSLPH) in detail. The experimental results and analysis are demonstrated in Section 4. Finally,
in Section 5, we make our conclusions.

2. Related works

2.1. Recent hashing methods

Recently, several novel methods which have attempted to learn hash functions for fast similarity search have been
proposed. One of the most well-known hashing methods that preserve the similarity information is the Locality-Sensitive
Hashing (LSH) [5]. In order to achieve better performance, the LSH method must increase the number of hash buckets
and hash tables, which incurs more time and memory consumption. To overcome the drawback of the LSH method, the KLSH
[6] and Multi-probe LSH [7] method were proposed. However, these methods are data-oblivious. The design of hash func-
tions did not take the characters of the objects into consideration which might incur quite inefficient (or long) codes.

For the sake of more efficient codes, several recent approaches have attempted to seek better data-aware hash functions
via machine learning. Most of these algorithms employed unsupervised learning to learn compact and effective hash
codes[9,12,25–28]. Salakhutdinov et al. proposed the Semantic Hashing (SH) [25] method. The SH method applied Restricted
Boltzmann Machines (RBM) to learn hash functions, and it has been shown that the learned hash codes preserve the seman-
tic similarity in Hamming distance. The experiment results of the SH method illustrated that it was indeed able to generate
compact and efficient binary codes and hence accelerated the similarity search. However, training the RBM was a computa-
tion-intensive and time-consuming process. This made the RBM expensive to retrain the hash function when the data
evolved. Spectral Hashing (SpH), a brand-new method, applied the spectral graph theory to generate hashing code, and it
could tackle the issue of data evolving. Although the SpH algorithm outperforms the SH algorithm, it has the drawback of
impractical assumption. The SpH method assumed that the objects are spread in the Euclidean space with special distribu-
tion (either uniform distribution or Gaussian distribution) which was practically inapplicable.
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