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a b s t r a c t

Transparency, accuracy, compactness and reliability all appear to be vital (even though
somewhat contradictory) requirements when it comes down to linguistic fuzzy modeling.
This paper presents a methodology for simultaneous optimization of these criteria by
chaining previously published various algorithms – a heuristic fully automated identifica-
tion algorithm that is able to extract sufficiently accurate, yet reliable and transparent
models from data and two algorithms for subsequent simplification of the model that
are able to reduce the number of output parameters as well as the number of fuzzy rules
with only a marginal negative effect to the accuracy of the model.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The research on fuzzy systems (see e.g. [7,9,10,23]) of last years has adequately pointed out the uniqueness and value of
interpretability and has also provided means and tools for facilitation and exploitation of this property. It seems that a ten-
tative consensus has been reached in what comprises interpretability. Aside from low-level interpretability requirements
(normality, coverage, convexity and distinguishability of fuzzy partitions) that have progressively become a norm in fuzzy
community, higher-level interpretability has become somewhat interchangeable with complexity (often termed as readabil-
ity in interpretability context). For example, a recent work [3] considers a small number of fuzzy rules and compact (incom-
plete) rules for large systems instrumental to interpretability and to reflect that, the proposed hierarchical fuzzy system for
assessing interpretability in this paper combines different complexity measures to produce the interpretability index.

Aside from being a measure of evaluation, interpretability index can serve as the optimization criterion for evolutionary
algorithms to improve interpretability of a fuzzy system and indeed, evolutionary algorithms have become increasingly pop-
ular in fuzzy optimization [2,7,10,13,17,40]. However, these algorithms work with a family of potential solutions, are there-
fore computationally expensive and require many (sometimes thousands) iterations to converge. This is often unacceptable
for practical applications and computationally more affordable alternatives must be sought.

Interestingly enough, most latest interpretability-related developments [2,3,17,21,24] have taken place in the context of
classification where the task of a fuzzy rule-based classifier is just to assign a class label (the number of which is limited) to
the sample presented to it. In modeling and control, however, the output is generally continuous imposing perhaps higher
accuracy requirements and rule interpolation obtains a central place. In consequence, complexity/readability issue that is
prominent in most interpretability studies becomes less important concern (note that because of the curse of dimensionality
fuzzy modeling is rarely performed for large-scale systems), however, this is more than compensated by increased interpo-
lation-driven interpretability (and other) concerns.
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The latter is the main reason why in fuzzy modeling and control we prefer to handle interpretability in a wider context
where interpretability is perceived as a measure of fuzzy system consistency [34] – an umbrella term that has been coined to
embrace all aspects of fuzzy system applicability in modeling (not to be confused with rule consistency utilized e.g. in [3]) –
and more specifically, a measure of internal consistency (that has its own aspects of transparency, linguistic integrity and
complexity).

What really unites all aspects of internal consistency is that they can be generally validated without external information
(e.g. validation data). Aside from purely academic research we, however, usually want to exploit interpretability for the prob-
lem at hand and therefore an internally totally consistent fuzzy system is generally not really useful if it is numerically
grossly inaccurate or its rules cannot be relied on because they express information that cannot be confirmed otherwise
(by available numerical data or expert opinion). These concerns – accuracy and reliability – are the most important aspects
of external consistency and, incidentally, what we typically aim for is a certain balance between internal and external con-
sistency of the system (this is perhaps better known as interpretability-accuracy tradeoff).

In this paper our goal is to provide a new methodology that is able to handle adequately all aspects of system consistency
(both internal and external) in fuzzy modeling at a moderate computational cost. For this we employ different algorithms.

The first step of the procedure is the identification of a transparent fuzzy model using the training data and a fully auto-
matic algorithm (developed to perfection in [36] to cope with noisy environment) that has built-in mechanisms for trans-
parency protection and reliability preservation.

The class of systems under consideration here are the fuzzy singleton (or 0th order Takagi–Sugeno) systems. What makes
these systems special is that they have all the attractive properties of linguistic (Mamdani) systems, whereas numerically
they are very easy to manipulate (their inference function is analytical and inexpensive) and interpolation in such systems
is very intuitive.

The assessment of complexity/readability of rules is carried out in subsequent manipulation of the identified model by
two further algorithms and is twofold. First, the issue of abundance of output singletons, characteristic to 0th order TS sys-
tems and the direct result of the application of the modeling algorithm in previous step, is addressed using a recently devel-
oped reduction algorithm [37]. This heavily reduces the number of output parameters and makes evident otherwise hidden
redundancy of fuzzy rules that can be removed by yet another recent method [35,38].

Numerous examples (including the applications of gas furnace and acidogenic state modeling) positively confirm that
what we have here is an efficient tool for minimizing the gap between accuracy (from one side) and the properties of trans-
parency, reliability and complexity from another side.

2. Preliminaries

Consider a multi-input single-output fuzzy system, consisting of R rules:

IF x1 is A1r AND x2 is A2r AND . . .

. . . AND xN is ANr THEN y is br

OR . . . ;

ð1Þ

where Air denote the linguistic labels of the ith (i = 1, . . . ,N) input variable (into which these variables have been partitioned)
associated with the rth (r = 1, . . . ,R) rule, and br is the scalar (fuzzy singleton), associated with the rth rule.

Each Air has its representation in the numerical domain – the membership function lir (MF). In a normal fuzzy system the
number of MFs per ith variable (Si) is relatively small – in any way, this number is rarely equal to R as the notation style in (1)
implies – moreover, it is often desired that all possible unique combinations of input MFs are represented ðR ¼

QN
i¼1SiÞ. MFs

of the system are thus shared between the rules and a separate R � N dimensional matrix that accommodates the identifiers
mri 2 {1,2, . . . ,Si} maps the existing MFs ls

i to the rule slots. The number of independent output singletons (T) in fuzzy sin-
gleton (0th order Takagi–Sugeno systems), on the other hand, is generally equal to R (and thus matches the notation style
in (1)).

In current approach MFs ls
i are defined by
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by what

XSi

s¼1

ls
i ðxiðkÞÞ ¼ 1: ð3Þ

The latter has become known as Ruspini [39], strong [13] or standard partition and is often exploited for its simplicity and for
built-in low-level interpretability requirements (coverage, normality, convexity, distinguishability).

A. Riid, E. Rüstern / Information Sciences 181 (2011) 4378–4393 4379



Download English Version:

https://daneshyari.com/en/article/393569

Download Persian Version:

https://daneshyari.com/article/393569

Daneshyari.com

https://daneshyari.com/en/article/393569
https://daneshyari.com/article/393569
https://daneshyari.com

